[1]
M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., vol. 95, Dec. 1995, pp.69-96, doi: 10. 1021/cr00033a00.
DOI: 10.1021/cr00033a004
Google Scholar
[2]
Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, and P. V. Kamat, To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films, J. Phys. Chem. Lett., vol. 1, Jul. 2010, p.2222.
DOI: 10.1021/jz100728z
Google Scholar
[3]
S. Sakthivel, and H. Kisch, Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angew. Chem. Int. Ed., vol. 42, Oct. 2003, pp.4908-4911, doi: 10. 1002/anie. 200351577.
DOI: 10.1002/anie.200351577
Google Scholar
[4]
H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal. Today, vol. 84, Jul. 2003, p.191.
DOI: 10.1016/s0920-5861(03)00273-6
Google Scholar
[5]
Q. Li, R. Xie, Y. W. Li, E. A. Mintz, and J. K. Shang, Enhanced Visible-Light-Induced Photocatalytic Disinfection of E. coli by Carbon-Sensitized Nitrogen-Doped Titanium Oxide, Environ. Sci. Technol., vol. 41, Jun. 2007, p.5050.
DOI: 10.1021/es062753c
Google Scholar
[6]
W. K. Choy, and W. Chu, Destruction of o-Chloroaniline in UV/TiO2 Reaction with Photosensitizing Additives, Ind. Eng. Chem. Res., vol. 44, Sept. 2005, p.8184–8189, doi: 10. 1021/ie0506419.
DOI: 10.1021/ie0506419
Google Scholar
[7]
P. -W. Chou, S. Treschev, P. -H. Chung, C. -L. Cheng, Y. -H. Tseng, Y. -J. Chen, and M. S. Wong, Observation of carbon-containing nanostructured mixed titania phases for visible-light photocatalysts, Appl. Phys. Lett., vol. 89, Sept. 2006, p.131919.
DOI: 10.1063/1.2357879
Google Scholar
[8]
V. M. Daskalaki, M. Antouiadou, G. L. Puma, D. I. Kondarides. and P. Lianos, Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater, Environ. Sci. Technol., April 2010, doi: 10. 1021/es9038962.
DOI: 10.1021/es9038962
Google Scholar
[9]
A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, LaTiO2N as a Visible-Light (≤600 nm)-Driven Photocatalyst (2), J. Phys. Chem. B, vol. 107, Dec. 2002, pp.791-797, doi: 10. 1021/jp026767q.
DOI: 10.1021/jp026767q
Google Scholar
[10]
A. Kudo, K. Omori, and H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, J. Am. Chem. Soc. vol. 121, Nov. 1999, pp.11459-11467.
DOI: 10.1021/ja992541y
Google Scholar
[11]
I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures, J. Am. Chem. Soc. Vol. 126, Sept. 2004, pp.13406-13413.
DOI: 10.1021/ja048296m
Google Scholar
[12]
M. K. Arora, A. S. K. Sinha, and S. N. Upadhyay, Active Cadmium Sulfide Photocatalysts for Hydrogen Production from Water, Ind. Eng. Chem. Res. Vol. 37, Aug. 1998, pp.3950-3955, doi: S0888-5885(97)00617-9.
DOI: 10.1021/ie970617y
Google Scholar
[13]
J. -H. Xu, H. Ke, D-C. Jia ,W. Wang, and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method, Journal of Alloys and Compounds, vol. 472, Jun. 2009, p.473–477, doi: 10. 1016/j. jallcom. 2008. 04. 090.
DOI: 10.1016/j.jallcom.2008.04.090
Google Scholar
[14]
A. Zachariah, K. V. Baiju, S. Shukla, K. S. Deepa, J. James, and K. G. K. Warrier, Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol−Gel Solvent Mixing and Calcination, J. Phys. Chem. C, vol. 112, Jul. 2008, p.11345.
DOI: 10.1021/jp712174y
Google Scholar