Visible-Light Driven BiFeO3 Nanosized Photocatalysts Prepared by a Sol-Gel Process

Article Preview

Abstract:

The single perovskite BiFeO3 nanoparticles were prepared by a sol-gel process. The BiFeO3 nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy, and Brunauer-Emmett-Teller (BET) method. It was found that the prepared BiFeO3 nanoparticles show the large specific surface area of 136 m2/g, and narrow band gap of 2.12 eV. Consequently, BiFeO3 nanoparticles show high visible-light photocatalytic activity for decomposition of methylene blue in comparison with the commercial Degussa P25. It is concluded that the large specific surface area and the narrow band gap contribute to the high visible-light photocatalytic activity through enhanced adsorption capability and visible-light absorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1912-1917

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., vol. 95, Dec. 1995, pp.69-96, doi: 10. 1021/cr00033a00.

DOI: 10.1021/cr00033a004

Google Scholar

[2] Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, and P. V. Kamat, To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films, J. Phys. Chem. Lett., vol. 1, Jul. 2010, p.2222.

DOI: 10.1021/jz100728z

Google Scholar

[3] S. Sakthivel, and H. Kisch, Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angew. Chem. Int. Ed., vol. 42, Oct. 2003, pp.4908-4911, doi: 10. 1002/anie. 200351577.

DOI: 10.1002/anie.200351577

Google Scholar

[4] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal. Today, vol. 84, Jul. 2003, p.191.

DOI: 10.1016/s0920-5861(03)00273-6

Google Scholar

[5] Q. Li, R. Xie, Y. W. Li, E. A. Mintz, and J. K. Shang, Enhanced Visible-Light-Induced Photocatalytic Disinfection of E. coli by Carbon-Sensitized Nitrogen-Doped Titanium Oxide, Environ. Sci. Technol., vol. 41, Jun. 2007, p.5050.

DOI: 10.1021/es062753c

Google Scholar

[6] W. K. Choy, and W. Chu, Destruction of o-Chloroaniline in UV/TiO2 Reaction with Photosensitizing Additives, Ind. Eng. Chem. Res., vol. 44, Sept. 2005, p.8184–8189, doi: 10. 1021/ie0506419.

DOI: 10.1021/ie0506419

Google Scholar

[7] P. -W. Chou, S. Treschev, P. -H. Chung, C. -L. Cheng, Y. -H. Tseng, Y. -J. Chen, and M. S. Wong, Observation of carbon-containing nanostructured mixed titania phases for visible-light photocatalysts, Appl. Phys. Lett., vol. 89, Sept. 2006, p.131919.

DOI: 10.1063/1.2357879

Google Scholar

[8] V. M. Daskalaki, M. Antouiadou, G. L. Puma, D. I. Kondarides. and P. Lianos, Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater, Environ. Sci. Technol., April 2010, doi: 10. 1021/es9038962.

DOI: 10.1021/es9038962

Google Scholar

[9] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, LaTiO2N as a Visible-Light (≤600 nm)-Driven Photocatalyst (2), J. Phys. Chem. B, vol. 107, Dec. 2002, pp.791-797, doi: 10. 1021/jp026767q.

DOI: 10.1021/jp026767q

Google Scholar

[10] A. Kudo, K. Omori, and H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, J. Am. Chem. Soc. vol. 121, Nov. 1999, pp.11459-11467.

DOI: 10.1021/ja992541y

Google Scholar

[11] I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures, J. Am. Chem. Soc. Vol. 126, Sept. 2004, pp.13406-13413.

DOI: 10.1021/ja048296m

Google Scholar

[12] M. K. Arora, A. S. K. Sinha, and S. N. Upadhyay, Active Cadmium Sulfide Photocatalysts for Hydrogen Production from Water, Ind. Eng. Chem. Res. Vol. 37, Aug. 1998, pp.3950-3955, doi: S0888-5885(97)00617-9.

DOI: 10.1021/ie970617y

Google Scholar

[13] J. -H. Xu, H. Ke, D-C. Jia ,W. Wang, and Y. Zhou, Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method, Journal of Alloys and Compounds, vol. 472, Jun. 2009, p.473–477, doi: 10. 1016/j. jallcom. 2008. 04. 090.

DOI: 10.1016/j.jallcom.2008.04.090

Google Scholar

[14] A. Zachariah, K. V. Baiju, S. Shukla, K. S. Deepa, J. James, and K. G. K. Warrier, Synergistic Effect in Photocatalysis As Observed for Mixed-Phase Nanocrystalline Titania Processed via Sol−Gel Solvent Mixing and Calcination, J. Phys. Chem. C, vol. 112, Jul. 2008, p.11345.

DOI: 10.1021/jp712174y

Google Scholar