The Study of Nano Optical Antenna Based on Surface Plasmon Resonance

Article Preview

Abstract:

The strong local property of surface plasmon polaritons can break through the diffraction limit, and reduce the propagation of corner scattering on nanoscale. The nanoantenna structure based on the plasmon resonant effect can collect the light energy effectively, and the local field enhancement effects of the structure have extensive application prospect. The field distribution and field enhancement effects of optical antenna under nanoscale are calculated with finite-difference time-domain (FDTD) method. Several different structures of nanooptical antenna are studied, and their enhancement properties are compared in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3825-3830

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang Zenghe, Lu Chunlan, and Qian Zuping, Antenna and propagation, China machine press, (2003).

Google Scholar

[2] C. Huang, A. Bouhelier, G. C. d. Francs, et al., Gain, detuning, and radiation patterns of nanoparticle optical antennas, Physical Review B, vol. 78, No. 15, October 2008, p.155407.

DOI: 10.1103/physrevb.78.155407

Google Scholar

[3] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C.F. Quate, Optical antennas: Resonators for local field enhancement, Journal of Applied Physics, vol. 94, No. 7, October 2003, p.4632–4642.

DOI: 10.1063/1.1602956

Google Scholar

[4] J. J. Greffet, Nanoantennas for light emission, Science, vol. 308, No. 5728, June 2005, p.1561–1563.

DOI: 10.1126/science.1113355

Google Scholar

[5] P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Resonant optical antennas, Science, vol. 308, June 2005, p.1607–1609.

DOI: 10.1126/science.1111886

Google Scholar

[6] D. G. Robert, J. S. Robert, and E. P. Daniel, Optical antenna: Towards a unity Efficiency near-field optical probe, Applied Physics Letters, vol. 70, No. 11, March 1997, p.1354–1356.

DOI: 10.1063/1.118577

Google Scholar

[7] E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Plasmonic laser antenna, Applied Physics Letters, vol. 89, No. 9, August 2006, p.093120.

DOI: 10.1063/1.2339286

Google Scholar

[8] Ge Debiao and Yan Yubo, Finite-Difference Time-Domain Electromagnetic Method[M], Xi' An: Xidian University Press, (2005).

Google Scholar

[9] Kunz K S and Luebbers R J, Finite difference time domain method for electromagnetics, Florida: CRC Press, (1993).

Google Scholar

[10] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth–Heinemann, (2000).

Google Scholar

[11] Hafner C, The Generalized Multiple Multipole Technique for Computational Electromagnetics. Boston: Artech House, (1990).

Google Scholar

[12] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a Photonic gap in Periodic dielectric structures, Physical Review Letters, vol. 65, No. 25, December 1990, p.3152–3154.

DOI: 10.1103/physrevlett.65.3152

Google Scholar

[13] H. Xie, F.M. Kong, and K. Li, The electric field enhancement and resonance in optical antenna composed of Au nanoparticles, Journal of Electromagnetic Waves and Applications, vol. 23, 2009, p.535–548.

DOI: 10.1163/156939309787612419

Google Scholar

[14] Holger Fischer and Olivier J. F. Martin, Engineering the optical response of plasmon nano-antennas, Optical Society of America, (2008).

Google Scholar

[15] Yan Haifeng, Yang Jing, Wu Xiaofei, and Zhang Jiasen, Analysis of field enhancement of resonant optical antennas [J]. Acta Scientiarum Naturalium Universitais Pekinensis, vol. 43, No. 5, 2007, p.639–642.

Google Scholar