[1]
S. Iijima, Helical microtubules of graphitic carbon, nature, vol. 354, pp.56-58, (1991).
DOI: 10.1038/354056a0
Google Scholar
[2]
C. Li, E. Thostenson, and T. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review, Composites Science and Technology, vol. 68, pp.1227-1249, (2008).
DOI: 10.1016/j.compscitech.2008.01.006
Google Scholar
[3]
R. Ruoff, and D. Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon, vol. 33, pp.925-930, (1995).
DOI: 10.1016/0008-6223(95)00021-5
Google Scholar
[4]
S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, Journal of Chemical Physics, vol. 104, pp.2089-2092, (1996).
DOI: 10.1063/1.470966
Google Scholar
[5]
M. Falvo, G. Clary, R. Taylor II, V. Chi, F. Brooks Jr, S. Washburn et al., Nanotubes under large strain, nature, vol. 389, p.583, (1997).
DOI: 10.1038/39282
Google Scholar
[6]
T. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu et al., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, nature, vol. 405, pp.769-772, (2000).
DOI: 10.1038/35015519
Google Scholar
[7]
J. Waters, L. Riester, M. Jouzi, P. Guduru, and J. Xu, Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression, Applied Physics Letters, vol. 85, p.1787, (2004).
DOI: 10.1063/1.1790602
Google Scholar
[8]
W. Bao, C. Zhu, and W. Cui, Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics, Physica B: Condensed Matter, vol. 352, pp.156-163, (2004).
DOI: 10.1016/j.physb.2004.07.005
Google Scholar
[9]
B. Yakobson, C. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Physical Review Letters, vol. 76, pp.2511-2514, (1996).
DOI: 10.1103/physrevlett.76.2511
Google Scholar
[10]
K. Liew, C. Wong, X. He, M. Tan, and S. Meguid, Nanomechanics of single and multiwalled carbon nanotubes, Physical Review B, vol. 69, p.115429, (2004).
DOI: 10.1103/physrevb.69.115429
Google Scholar
[11]
T. Chang, J. Hou, and X. Guo, Reversible mechanical bistability of single-walled carbon nanotubes under axial strain, Applied Physics Letters, vol. 88, p.211906, (2006).
DOI: 10.1063/1.2206872
Google Scholar
[12]
Z. Kang, M. Li, and Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Computational Materials Science, in press.
DOI: 10.1016/j.commatsci.2010.08.011
Google Scholar
[13]
J. Lin, S. Ju, S. Yung, W. Wu, M. Weng, and W. Lee, Mechanical and dynamical behavior of carbon nanotube with defects: A molecular dynamics simulation, Proc. 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS 4th), IEEE Press, Jan. 2009, pp.539-542.
DOI: 10.1109/nems.2009.5068637
Google Scholar
[14]
J. Yuan, and K. Liew, Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes, Carbon, vol. 47, pp.1526-1533, (2009).
DOI: 10.1016/j.carbon.2009.01.048
Google Scholar
[15]
C. Wong, Elastic properties of imperfect single-walled carbon nanotubes under axial tension, Computational Materials Science, (2010).
DOI: 10.1016/j.commatsci.2010.04.037
Google Scholar
[16]
X. Hao, H. Qiang, and Y. Xiaohu, Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation, Composites Science and Technology, vol. 68, pp.1809-1814, (2008).
DOI: 10.1016/j.compscitech.2008.01.013
Google Scholar
[17]
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, vol. 117, pp.1-19, (1995).
DOI: 10.1006/jcph.1995.1039
Google Scholar
[18]
D. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, vol. 42, pp.9458-9471, (1990).
DOI: 10.1103/physrevb.42.9458
Google Scholar
[19]
W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics, vol. 14, pp.33-38, (1996).
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar