[1]
D. Tiab and E.C. Donaldson, Petrophysics, 2nd ed., Elsevier, 2004, pp.65-67.
Google Scholar
[2]
J. Kozeny, Uber Die Kapillare Leitung des Wassers im Boden, Situngsber Akad. Wiss, Wein, Math – Naturwiss, KL, vol. 136(Ila), 1927, pp.271-306.
Google Scholar
[3]
W.E. Kenyon, J.J. Howard, A. Sezginer, C. Straley, A. Matteson, K. Horkowita, and R. Ehrlich, Pore-size distribution and NMR in microporous cherty sandstones, SPWLA 30th Anual Loggong Symposium, Paper LL, (1989).
Google Scholar
[4]
W.E. Kenyon, Nuclear magnetic resonance as a petrophysical measurement, Nuclear Geophysics, 6(2), 1992, pp.153-171.
Google Scholar
[5]
W.E. Kenyon, Petrophysical principles of applications of NMR logging, The Log Analyst, vol. 38, 1997, pp.21-43.
Google Scholar
[6]
Straley, D. Rossini, H.J. Vinegar, P.N. Tutunjian and C.E. Morriss, Core analysis by low-field NMR, The Log Analyst, vol. 38, 1997, pp.84-94.
Google Scholar
[7]
J.D. Loren and J.D. Robinson, Relations between pore size, ffuid and matrix properties, and NML mea- surements, Soc, Petrol. Eng. J, vol. 10, 1970, pp.268-278.
DOI: 10.2118/2529-pa
Google Scholar
[8]
W.E. Kenyon, P.I. Day, C. Straley and J.F. Willemsen, A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones, SPE For mation Evaluation, vol. 3, 1998, pp.622-636.
DOI: 10.2118/15643-pa
Google Scholar
[9]
J.R. Banavar and L.M. Schwartz, Magnetic Resonance as a Probe of Permeability in Porous Media, Phys. Rev. Lett., vol. 58, 1987, pp.1411-1414.
DOI: 10.1103/physrevlett.58.1411
Google Scholar
[10]
G.R. Coates, and J.L. Dumanoir, A New Approach to Improved Log-Derived Permeability, The Log Analyst, vol. 15, 1974, pp.17-31.
Google Scholar
[11]
Timur, An investigation of permeability, porosity, and residual water saturation relationships, The Log Analyst, vol. 9, 1968, pp.8-17.
Google Scholar
[12]
C.I. guru, U.O. Onyeagoro, J. Lin, J. Okkerman and I.O. Sikiru, Permeability prediction using genetic unit averages of flow zone indicators (FZIs) and Neural Network, SPE98828, (2005).
DOI: 10.2118/98828-ms
Google Scholar
[13]
C.E. Shannon. A mathematical theory of communication, The bell system technical journal, vol. 27, 1948, pp.379-423, 623-656.
DOI: 10.1002/j.1538-7305.1948.tb00917.x
Google Scholar
[14]
T. Yang, Computational Verb Decision Trees,. International Journal of Computational Cognition, vol. 4 (4), 2006, p.34–46.
Google Scholar
[15]
S.D. Mohaghegh, Virtual Intelligence Applications in Petroleum Enginerring: Patr 1-Artificial Neural Networks, SPE 58046, JPT Sep. 2000, pp.64-70.
Google Scholar
[16]
S.D. Mohaghegh, Virtual Intelligence Applications in Petroleum Enginerring: Patr 2-Evolutionary Computing, paper SPE 61925, JPT Oct. 2000, pp.40-46.
Google Scholar
[17]
Berson, S. Smith, K. Thearling, Building Data Mining Applications for CRM, McGraw-Hill, (1999).
Google Scholar
[18]
H.N. Robert, Kolmogorov's mapping neural network existence theorem, Proc IEEE 1st Inter Conf on Neural Networks, 1987), Volume: 3, Publisher: IEEE Press, pp.11-13.
Google Scholar
[19]
D.S. Huang, The Local Minima-Free Condition of Feedforward Neural Networks for Outer-Supervised Learning, IEEE Transactons on systems, man, and cybernetics - Part B: Cybernetics, vol. 28, No. 3, 1998, pp.477-480.
DOI: 10.1109/3477.678658
Google Scholar
[20]
Y. Chauvin, D.E. Rumelhart, Backpropagation: theory, architectures, and applications, Lawrence Erlbaum Associates, Inc, (1995).
Google Scholar