Design of Quaternary Half Adder Using Hybrid SETMOS Cell

Article Preview

Abstract:

Adder is one of the important arithmetic units in computers. In this paper, we investigate the implementation of quaternary half adder based on multiple-valued (MV) logic gates using single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. We use hybrid SETMOS universal literal gate which has been proposed by Mahapatra and Ionesco. We apply two 4-radix inputs to the proposed quaternary half adder and obtain sum and carry outputs. The logic operation of the proposed quaternary half adder is verified by using HSPICE simulator. Moreover we compare the performance of our proposed quaternary half adder with the performance of a quaternary half adder based on MOS technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5085-5089

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. C. Zhang, N. J. Wu, Smart universal multiple-valued logic gates by transferrings electrons, IEEE Trans. On Nanotechnol., vol. 7, no. 4, pp.440-450, July (2008).

DOI: 10.1109/tnano.2008.920193

Google Scholar

[2] Y. Ono et al., Si complementary single-electron inverter, IEDM Tech. Dig., p.367–370, (1999).

Google Scholar

[3] K. Uchida, J. Koga, R. Ohba, and A. Toriumi, Programmable single-electron transistor logic for low-power intelligent Si LSI, Proc. ISSCC, vol. 2, p.162–453, (2002).

DOI: 10.1109/isscc.2002.992194

Google Scholar

[4] S. Mahapatra, A. M. Ionescu, K. Banerjee, and M. J. Declerq, Modeling and analysis of power dissipation in single electron logic, IEDM Tech. Dig., p.323–326, (2002).

Google Scholar

[5] H. Inokawa, A. Fujiwara, and Y. Takahashi, A multiple-valued logic with merged single-electron and MOS transistors, IEDM Tech. Dig., p.147–150, (2001).

DOI: 10.1109/iedm.2001.979453

Google Scholar

[6] M. Goossens, Analog Neural Networks in Single-Electron Tunneling Technology, Delft, the Netherlands: Delft Univ. Press, (1998).

Google Scholar

[7] K. K. Likharev, Single selectron devices and their applications, Proc. IEEE, vol. 87, no. 4, p.606–632, (1999).

Google Scholar

[8] G. Snider, P. Kuekes, T. Hogg, and R. Stanley Williams, Nanoelectronic architectures, Appl. Phys. A, Solids Surf, vol. 80, p.1183–1195, (2005).

DOI: 10.1007/s00339-004-3154-4

Google Scholar

[9] K. C. Smith, The prospects of multiple-valued logic: A technology and applications view, IEEE Trans. Comput., vol. ac-30, no. 9, p.619–634, September (1981).

DOI: 10.1109/tc.1981.1675860

Google Scholar

[10] K. Walus and Graham A. Jullien, Design tools for an emerging SoC technology: Quantum-dot cellular automata, Proc. IEEE, vol. 94, no. 6, p.1225–1244, Jun (2006).

DOI: 10.1109/jproc.2006.875791

Google Scholar

[11] T. Oya, T. Asai, and Y. Amemiya, Stochastic resonance in an ensemble of single-electron neuromorphic devices and its application to competitive neural networks, Chaos, Solitons Fractals, vol. 32, p.855–861, (2007).

DOI: 10.1016/j.chaos.2005.11.027

Google Scholar

[12] S. Mahapatra, A. M. Ionescu, Hybrid CMOS Single-Electron-Transistor Device and Circuit Design, Artech House, 2006, pp.129-165.

Google Scholar

[13] S. Kawahito, K. Mizuno and T. Nakamura, Multiple-valued current mode arithmetic circuits based on redundant positive-digit number representations, Proc. 21st IEEE Int. Symp. On Multiple-Valued Logic (ISMVL), pp.330-339, (1991).

DOI: 10.1109/ismvl.1991.130752

Google Scholar

[14] L. J. Micheel, Heterojunction bipolar technology for emitter-coupled multiple-valued logic in gigahertz adder and multipliers, Proc. 22nd IEEE Int. Symp. On Multiple-Valued Logic (ISMVL), pp.19-26, (1992).

DOI: 10.1109/ismvl.1992.186773

Google Scholar

[15] H. C. Lin, Resonant tunneling diodes for multi-valued digital application, Proc. 21st IEEE Int. Symp. On Multiple-Valued Logic (ISMVL), pp.188-195, (1994).

DOI: 10.1109/ismvl.1994.302201

Google Scholar

[16] H. Inokawa and Y. Takahashi, Experimental and simulation studies of single-electron-transistor-based multiple-valued logic, in Proc. 33th Int. Symp. Mult. Valued Logic (ISMVL), p.259–266, May (2003).

DOI: 10.1109/ismvl.2003.1201415

Google Scholar

[17] S. Mahapatra and A. M. Ionescu, Realization of multiple valued logic and memory by hybrid SETMOS architecture, IEEE Trans. Nanotechnol., vol. 4, no. 6, p.705–714, November (2005).

DOI: 10.1109/tnano.2005.858602

Google Scholar

[18] S. Cotofana, C. Lageweg, and S. Vassiliadis, Addition related arithmetic operations via controlled transport of charge, IEEE Trans. Comput., vol. 54, no. 3, p.243–256, March (2005).

DOI: 10.1109/tc.2005.40

Google Scholar

[19] I. M. Thoidis, D. Soudris, J. M. Fernandes, and A. Thanailakis, The circuit design of multiple-valued logic voltage-mode adders, IEEE, pp.162-165, (2001).

DOI: 10.1109/iscas.2001.922197

Google Scholar

[20] C. Meenderinck, S. Cotofana, and C. Lageweg, High radix addition Via conditional charge transport in single electron tunneling technology, Proc. 16th IEEE Int. Conf. On Applivation Specific Systems, (2005).

DOI: 10.1109/asap.2005.39

Google Scholar

[21] K. C. Smith, A multiple valued logic: A tutorial and appreciation, IEEE Computer, vol. 21, no. 4, p.17–27, April (1988).

DOI: 10.1109/2.48

Google Scholar

[22] S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee, and A. M. Ionescu, Analytical modeling of single electron transistor for hybrid CMOS-SET analog IC design, IEEE Trans. On Electron Devices, vol. 51, no. 11, pp.1772-1782, November (2004).

DOI: 10.1109/ted.2004.837369

Google Scholar