Synthesis of ZnO with Different Morphology and its Photocatalytic Property

Article Preview

Abstract:

ZnO nanostructures with different morphology have been successfully fabricated by a simple relative low temperature approach at 90 °C for 5 h without surfactant assistance. These structures can be easily tailed using varied concentrations of sodium hydroxide (NaOH) and different amounts of the hydrazine hydrate (N2H4·H2O). X-ray diffraction (XRD) result proves the formation of ZnO with wurtzite structure. Microstructure as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicates that the rod-like and chrysanthemum-like ZnO nanostructures contain many radial nanorods, which grow along the [0001] direction. Furthermore, the as-prepared ZnO nanomaterials exhibit high activity on the photo-catalytic degradation of typical persistent organic pollutants (POPs), indicating that they are promising as semiconductor photo-catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

547-552

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.W. Pan, Z.R. Dai and Z.L. Wang, Nanobelts of semiconducting oxides, Science, vol. 291, 2001, pp.1947-1949, doi: 10. 1126/science. 1058120.

DOI: 10.1126/science.1058120

Google Scholar

[2] H.J. Muhr, F. Krumeich, U.P. Schonholzer, F. Bieri, M. Niederberger, L.J. Gauckler and R. Nesper, Vanadium Oxide Nanotubes – A New Flexible Vanadate Nanophase, Adv. Mater. vol. 12, 2000, pp.231-234, doi: 10. 1002/(SICI)1521-4095(200002).

DOI: 10.1002/(sici)1521-4095(200002)12:3<231::aid-adma231>3.0.co;2-d

Google Scholar

[3] S. Polarz, F. Neues, M.W.E. van den Berg, W. Grunert and L. Khodeir, Mesosynthesis of ZnO-silica composites for methanol nanocatalysis, J. Am. Chem. Soc. vol. 127, 2005, pp.12028-12034, doi: 10. 1021/ja0516514.

DOI: 10.1021/ja0516514

Google Scholar

[4] C.L. Hsu, S.S. Yang, Y.K. Tseng, I.C. Chen, Y.R. Lin, S.J. Chang and S.T. Wu, A new and simple means for self-assembled nanostructure: facilitated by buffer layer, J. Phys. Chem. B, Vol. 108, Dec 2004, pp.18799-18803, doi: 10. 1021/jp0456382.

DOI: 10.1021/jp0456382

Google Scholar

[5] J.H. He, C.S. Lao, L.J. Chen, D. Davidovic and Z.L. Wang, Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties, J. Am. Chem. Soc. vol. 127, 2005, pp.16376-16377, doi: 10. 1021/ja0559193.

DOI: 10.1021/ja0559193

Google Scholar

[6] P.M. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C.S. Lao and Z.L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science, vol. 309, 2005, pp.1700-1704, doi: 10. 1126/science. 1116495.

DOI: 10.1126/science.1116495

Google Scholar

[7] B.Q. Cao, W.P. Cai, G.T. Duan, Y. Li, Q. Zhao and D.P. Yu, A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties, Nanotechnology, vol. 16, 2005, pp.2567-2574.

DOI: 10.1088/0957-4484/16/11/017

Google Scholar

[8] B. Liu and H.C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. (Communication) vol. 15, 2003, pp.4430-4431, doi: 10. 1021/ja0299452.

DOI: 10.1021/ja0299452

Google Scholar

[9] H. Zhang, D.R. Yang and S.Z. Li, Controllable Growth of ZnO Nanostructures by Citric Acid Assisted Hydrothermal Process, Materials Letters, vol. 59, 2005, pp.1696-1700, 10. 1016/j. matlet. 2005. 01. 056.

DOI: 10.1016/j.matlet.2005.01.056

Google Scholar

[10] C.L. Jiang, W.Q. Zhang, G.F. Zou, W.C. Yu and Y.T. Qian, Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO, J. Phys. Chem. B, vol. 109, 2005, pp.1361-1363, doi: 10. 1021/jp046655u.

DOI: 10.1021/jp046655u

Google Scholar

[11] H.Y. Yin, Z.D. Xu, Q.S. Wang, J.Y. Bai and H.H. Bao, Study of assembling ZnO nanorods into chrysanthemum-like crystals, Mater. Chem. Phys. vol. 91, 2005, pp.130-133, 10. 1016/j. matchemphys. 2004. 11. 001.

DOI: 10.1016/j.matchemphys.2004.11.001

Google Scholar

[12] H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu and D.L. Que, Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process, ,J. Phys. Chem. B, vol. 108, 2004, pp.3955-3958.

DOI: 10.1021/jp036826f

Google Scholar

[13] J.B. Liang, J.W. Liu, Q. Xie, S. Bai, W.C. Yu and Y.T. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles, , J. Phys. Chem. B, vol. 109, 2005, pp.9463-9467, doi: 10. 1021/jp050485j.

DOI: 10.1021/jp050485j

Google Scholar

[14] Y.J. Jang, C. Simer and T. Ohm, Comparison of Zinc Oxide Nanoparticles and its Nano-Crystalline Particles on the Photocatalytic Degradation of Methyl-ene Blue, Mater. Res. Bull. vol. 41, 2006, pp.67-77.

DOI: 10.1016/j.materresbull.2005.07.038

Google Scholar

[15] M.M. Uddin, M.A. Hasnat, A.J.F. Samed and R.K. Majumdar, Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of Erythrosine, Dyes and Pigments, vol. 75, 2007, pp.207-212, doi: 10. 1016/j. dyepig. 2006. 04. 023.

DOI: 10.1016/j.dyepig.2006.04.023

Google Scholar

[16] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. vol. 15, 2003, pp.353-389, doi: 10. 1002/adma. 200390087.

DOI: 10.1002/adma.200390087

Google Scholar