A New Hydrogen Peroxide Biosensor Based on Hrp/Ag Nanowires/Glassy Carbon Electrode

Article Preview

Abstract:

An amperometric biosensor for H2O2 detection was developed with immobilization of Horseradish Peroxidase (HRP) on Ag nanowires (AgNWs). Ag nanowires (AgNWs) have been prepared by the reductive deposition method and characterized by the scanning electron microscopy (SEM) and the energy dispersive X-ray (EDX). The electrochemical performance of the HRP/AgNWs/GC electrode was investigated by cyclic voltammetry (CV) and chronoamperometry and the use of Ag nanowires led to an efficient enzyme loading, and also provided an increased surface area for sensing the reaction, showing high electrocatalytic activity towards the reduction of H2O2. Under the optimized conditions, the response of the biosensor towards H2O2 was investigated by chronoamperometry. The biosensor exhibited excellent sensitivity (the detection limit was down to 0.005 mM), fast response time (15 sec). Moreover, the biosensor had long-time stability and good reproducibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

577-584

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G. Marko-Varga, Peroxidase-modified electrodes: fundamentals and application. Anal. Chim. Acta 1996, 330, pp.123-138.

DOI: 10.1016/0003-2670(96)00169-9

Google Scholar

[2] E.C. Hurdis, Hendrik Romeyn, J. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem. 1954, p.26, 320-325.

DOI: 10.1021/ac60086a016

Google Scholar

[3] C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992, 117, pp.1781-1784.

DOI: 10.1039/an9921701781

Google Scholar

[4] M. Aizawa, Y. Ikariyama, H. Kun, Photovoltaic determination of hydrogen peroxide with a biophotodiode. Anal. Lett. 1984, 17, pp.555-564.

DOI: 10.1080/00032718408066489

Google Scholar

[5] K. Nakashima, K. Maki, S. Kawaguchi, S. Akiyama, Y. Tsukamoto, Imai, K. Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2, 4, 6, 8-tetrathiomorpholinopyrimido[5, 4-d]pyrimidine as a fluorescent component. Anal. Sci. 1991, 7, p.709.

DOI: 10.2116/analsci.7.709

Google Scholar

[6] S. Serradilla Razola, B. Lopez Ruiz, N. Mora Diez, H.B. Mark Jr, Kauffmann, J.M. mHydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens. Bioelectron. 2002, 17, pp.921-928.

DOI: 10.1016/s0956-5663(02)00083-0

Google Scholar

[7] T. Tatsuma, M. Gondaira, T. Watanabe, Peroxidase-incorporated polypyrrole membranemelectrodes. Anal. Chem. 1992, 64, pp.1183-1187.

DOI: 10.1021/ac00034a019

Google Scholar

[8] S. Thanachasai, S. Rokutanzono, S. Yoshida, T. Watanabe, Novel hydrogen peroxide sensorsmbased on peroxidase-carryingpoly{pyrrole-co-[4-(3-pyrrolyl)butanesulfonate]}copolymerm films. Anal. Sci. 2002, 18, pp.773-777.

DOI: 10.2116/analsci.18.773

Google Scholar

[9] W. Oungpipat, P.W. Alexander, P. Southwell-Keely, A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation. Anal. Chim. Acta 1995, 309, pp.35-45.

DOI: 10.1016/0003-2670(95)00066-9

Google Scholar

[10] L. Wang, E. Wang, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal au modified ITO electrode. Electrochem. Commun. 2004, 6, pp.225-229.

DOI: 10.1016/j.elecom.2003.12.004

Google Scholar

[11] Y. Yang, S. Mu, Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid. Biosens. Bioelectron. 2005, 21, pp.74-78.

DOI: 10.1016/j.bios.2004.08.049

Google Scholar

[12] S. Cosnier, Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 2003, 377, pp.507-520.

DOI: 10.1007/s00216-003-2131-7

Google Scholar

[13] S. Hrapovic, E. Majid, Y.L. Liu, K. Male, J.H.T. Luong, Metallic Nanoparticle−Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds Anal. Chem. 2006, 78, pp.5504-5512.

DOI: 10.1021/ac060435q

Google Scholar

[14] Chu, X.; Duan, D.X.; Shen, G.L.; Yu, R.Q. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 2007, 17, p.2040-(2047).

DOI: 10.1016/j.talanta.2006.09.013

Google Scholar

[15] Q.J. Chi, S.J. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode. Anal. Chim. Acta. 1993, 278, pp.17-23.

DOI: 10.1016/0003-2670(93)80080-5

Google Scholar

[16] L.H. Xu, Y.H. Zhu, X.L. Yang, C.Z. Li, Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater. Sci. Eng. C 2009, 29, pp.1306-1310.

DOI: 10.1016/j.msec.2008.10.031

Google Scholar

[17] S.A. Miscoria, G.D. Barrera, G.A. Rivas, Analytical performance of a glucose biosensor prepared by immobilization of glucose oxidase and different metals into a carbon paste electrode. Electroanalysis 2002, 14, pp.981-987.

DOI: 10.1002/1521-4109(200208)14:14<981::aid-elan981>3.0.co;2-1

Google Scholar

[18] H. Sakslund, J. Wang, O. Hammerich, A critical evaluation of a glucose biosensor made by codeposition of palladium and glucose oxidase on glassy carbon. J. Electroanal. Chem. 1994, 374, pp.71-79.

DOI: 10.1016/0022-0728(94)03331-5

Google Scholar

[19] F. A. Benseba, A. Farah, D.S. Wang, C. Bock, X.M. Du, J. Kung, Y.L. Page, Microwave synthesis of polymer-embedded Pt–Ru catalyst for direct methanol fuel cell. J. Phys. Chem. B. 2005, 109, p.15339.

DOI: 10.1021/jp0519870

Google Scholar

[20] S.C. Mu, H. Tang, Z. H. Wan, M. Pan, R.Z. Yuan, Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers. Electrochem. Commun. 2005, 7, pp.1143-1147.

DOI: 10.1016/j.elecom.2005.08.019

Google Scholar

[21] Ch. Y. Wang, X. Y. Hu, Determination of benorilate in pharmaceutical formulations and its metabolite in urine at carbon paste electrode modified by silver nanoparticles Talanta, 2005, 67, pp.625-633.

DOI: 10.1016/j.talanta.2005.03.009

Google Scholar

[22] X.D. Wu, H. Li, L.Q. Chen, X.J. Huang, Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries Solid State Ionics, 2002, 149 , pp.185-192.

DOI: 10.1016/s0167-2738(02)00146-7

Google Scholar

[23] D.J. Guo, L. L. Hu, Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution, Carbon, 2005, 43, pp.1259-1264.

DOI: 10.1016/j.carbon.2004.12.021

Google Scholar

[24] S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 2004, 76, p.1083–1088.

DOI: 10.1021/ac035143t

Google Scholar