[1]
T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G. Marko-Varga, Peroxidase-modified electrodes: fundamentals and application. Anal. Chim. Acta 1996, 330, pp.123-138.
DOI: 10.1016/0003-2670(96)00169-9
Google Scholar
[2]
E.C. Hurdis, Hendrik Romeyn, J. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal. Chem. 1954, p.26, 320-325.
DOI: 10.1021/ac60086a016
Google Scholar
[3]
C. Matsubara, N. Kawamoto, K. Takamura, Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992, 117, pp.1781-1784.
DOI: 10.1039/an9921701781
Google Scholar
[4]
M. Aizawa, Y. Ikariyama, H. Kun, Photovoltaic determination of hydrogen peroxide with a biophotodiode. Anal. Lett. 1984, 17, pp.555-564.
DOI: 10.1080/00032718408066489
Google Scholar
[5]
K. Nakashima, K. Maki, S. Kawaguchi, S. Akiyama, Y. Tsukamoto, Imai, K. Peroxyoxalate chemiluminescence assay of hydrogen peroxide and glucose using 2, 4, 6, 8-tetrathiomorpholinopyrimido[5, 4-d]pyrimidine as a fluorescent component. Anal. Sci. 1991, 7, p.709.
DOI: 10.2116/analsci.7.709
Google Scholar
[6]
S. Serradilla Razola, B. Lopez Ruiz, N. Mora Diez, H.B. Mark Jr, Kauffmann, J.M. mHydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens. Bioelectron. 2002, 17, pp.921-928.
DOI: 10.1016/s0956-5663(02)00083-0
Google Scholar
[7]
T. Tatsuma, M. Gondaira, T. Watanabe, Peroxidase-incorporated polypyrrole membranemelectrodes. Anal. Chem. 1992, 64, pp.1183-1187.
DOI: 10.1021/ac00034a019
Google Scholar
[8]
S. Thanachasai, S. Rokutanzono, S. Yoshida, T. Watanabe, Novel hydrogen peroxide sensorsmbased on peroxidase-carryingpoly{pyrrole-co-[4-(3-pyrrolyl)butanesulfonate]}copolymerm films. Anal. Sci. 2002, 18, pp.773-777.
DOI: 10.2116/analsci.18.773
Google Scholar
[9]
W. Oungpipat, P.W. Alexander, P. Southwell-Keely, A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation. Anal. Chim. Acta 1995, 309, pp.35-45.
DOI: 10.1016/0003-2670(95)00066-9
Google Scholar
[10]
L. Wang, E. Wang, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal au modified ITO electrode. Electrochem. Commun. 2004, 6, pp.225-229.
DOI: 10.1016/j.elecom.2003.12.004
Google Scholar
[11]
Y. Yang, S. Mu, Determination of hydrogen peroxide using amperometric sensor of polyaniline doped with ferrocenesulfonic acid. Biosens. Bioelectron. 2005, 21, pp.74-78.
DOI: 10.1016/j.bios.2004.08.049
Google Scholar
[12]
S. Cosnier, Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 2003, 377, pp.507-520.
DOI: 10.1007/s00216-003-2131-7
Google Scholar
[13]
S. Hrapovic, E. Majid, Y.L. Liu, K. Male, J.H.T. Luong, Metallic Nanoparticle−Carbon Nanotube Composites for Electrochemical Determination of Explosive Nitroaromatic Compounds Anal. Chem. 2006, 78, pp.5504-5512.
DOI: 10.1021/ac060435q
Google Scholar
[14]
Chu, X.; Duan, D.X.; Shen, G.L.; Yu, R.Q. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 2007, 17, p.2040-(2047).
DOI: 10.1016/j.talanta.2006.09.013
Google Scholar
[15]
Q.J. Chi, S.J. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode. Anal. Chim. Acta. 1993, 278, pp.17-23.
DOI: 10.1016/0003-2670(93)80080-5
Google Scholar
[16]
L.H. Xu, Y.H. Zhu, X.L. Yang, C.Z. Li, Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater. Sci. Eng. C 2009, 29, pp.1306-1310.
DOI: 10.1016/j.msec.2008.10.031
Google Scholar
[17]
S.A. Miscoria, G.D. Barrera, G.A. Rivas, Analytical performance of a glucose biosensor prepared by immobilization of glucose oxidase and different metals into a carbon paste electrode. Electroanalysis 2002, 14, pp.981-987.
DOI: 10.1002/1521-4109(200208)14:14<981::aid-elan981>3.0.co;2-1
Google Scholar
[18]
H. Sakslund, J. Wang, O. Hammerich, A critical evaluation of a glucose biosensor made by codeposition of palladium and glucose oxidase on glassy carbon. J. Electroanal. Chem. 1994, 374, pp.71-79.
DOI: 10.1016/0022-0728(94)03331-5
Google Scholar
[19]
F. A. Benseba, A. Farah, D.S. Wang, C. Bock, X.M. Du, J. Kung, Y.L. Page, Microwave synthesis of polymer-embedded Pt–Ru catalyst for direct methanol fuel cell. J. Phys. Chem. B. 2005, 109, p.15339.
DOI: 10.1021/jp0519870
Google Scholar
[20]
S.C. Mu, H. Tang, Z. H. Wan, M. Pan, R.Z. Yuan, Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers. Electrochem. Commun. 2005, 7, pp.1143-1147.
DOI: 10.1016/j.elecom.2005.08.019
Google Scholar
[21]
Ch. Y. Wang, X. Y. Hu, Determination of benorilate in pharmaceutical formulations and its metabolite in urine at carbon paste electrode modified by silver nanoparticles Talanta, 2005, 67, pp.625-633.
DOI: 10.1016/j.talanta.2005.03.009
Google Scholar
[22]
X.D. Wu, H. Li, L.Q. Chen, X.J. Huang, Agglomeration and the surface passivating film of Ag nano-brush electrode in lithium batteries Solid State Ionics, 2002, 149 , pp.185-192.
DOI: 10.1016/s0167-2738(02)00146-7
Google Scholar
[23]
D.J. Guo, L. L. Hu, Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution, Carbon, 2005, 43, pp.1259-1264.
DOI: 10.1016/j.carbon.2004.12.021
Google Scholar
[24]
S. Hrapovic, Y. Liu, K.B. Male, J.H.T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 2004, 76, p.1083–1088.
DOI: 10.1021/ac035143t
Google Scholar