Study on the Effect of ZnO Buffer Layer Thickness on the Properties of MgZnO Film

Article Preview

Abstract:

ZnO has recently attracted considerable attention due to its favorable properties such as the wider band gap (3.37eV) at room temperature, the large binding energy of excitons (60meV). These good photoelectric and piezoelectric properties [1-4] cause it has immensity space for developing at surface acoustic wave devices, light emitting diodes (LEDs) [5] , photodetectors [6], gas sensor and solar cells [7] etc. MgZnO has many similar properties to ZnO. Furthermore, the band gap of MgZnO is 3.3-4.0eV [9] due to the wider band gap of MgO (7.7eV [8]). In this paper, we report the characteristic of MgxZn1-xO films which were grown on c-plane sapphire with different thickness-ZnO buffer layers by MOCVD. By investigating the surface morphology, structural and optical properties, some dependences between properties of MgZnO films and the thicknesses of ZnO buffer layers can be found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1192-1195

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Klingshirn: Phys. Stat. Sol. (B) Vol. 71 (1975), p.547.

Google Scholar

[2] D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu:J. Crystal Growth Vol. 184 (1998), p.605.

Google Scholar

[3] P. Zu, Z.K. Tang, G.K.L. Wong: Solid State Commun Vol. 103 (1997), p.459.

Google Scholar

[4] A. Ohtomo, M. Kawasaki, T. Koida: Appl. Phys. Lett. Vol. 72 (1998), p.2466.

Google Scholar

[5] T. Slki, Y. Hatanaka, D.C. Look: Appl. Phys. Lett. Vol. 76 (2000), p.3257.

Google Scholar

[6] Y. Liu, C.R. Gorla, S. Liang, et al. : J. Electron. Mater. Vol. 29 (2000), p.60.

Google Scholar

[7] U. Rau, M. Schmidt: thin Solid Films Vol. 387 (2001), p.141.

Google Scholar

[8] T. Minemoto, T. Negami, N. Shiro: Thin Solid Films Vol. 372 (2000), p.173.

Google Scholar

[9] A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma: Appl. Phys. Lett. Vol. 75 (1999), p.980.

Google Scholar

[10] S. Muthukumar, J. Zhong, Y. Chen et al.: Appl. Phys. Lett. Vol. 82 (2003), p.742.

Google Scholar

[11] Kyu-Hyun Bang, Deuk-Kyu Hwang: Appl. Surf. Sci. Vol. 207 (2003), p.359.

Google Scholar

[12] W.I. Park, Gyu-Chui, H.M. Jang: Appl. Phys. Lett. Vol. 79 (2001), p. (2022).

Google Scholar

[13] K. Hiramatsu, S. Itoh, H. Amano: J. Crystal. Growth Vol. 115 (1991), p.628.

Google Scholar

[14] I. Akasaki, H. Amano, Y. Koide: J. Cryst. Growth Vol. 98 (1989), p.209.

Google Scholar

[15] H. Amano, I. Akasaki, K. Hiramatsu: Thin Solid Films Vol. 163 (1988), p.415.

Google Scholar

[16] E. Burstein: Phys. Rev. Vol. 93 (1954), p.632.

Google Scholar

[17] F.K. Shan B.C. Shin, et al.: J. Korean Phys. Soc. Vol. 42, (2003), p. S 1174.

Google Scholar

[18] J. -M. Myoung, W.H. Yoon, et al.: Jpn. J. Appl. Phys. Vol. 41 (2002), p.28.

Google Scholar

[19] Yuantao Zhang et al.: J. Crystal Growth Vol. 262 (2004), p.456–460.

Google Scholar