Liquid Flow Characteristics in Microchannels

Article Preview

Abstract:

A three-dimensional model was developed to simulate the laminar flow and convective heat transfer in rectangular silicon microchannels,which have hydraulic diameter of 95.3,92.3 ,85.8 , 80 and 75μm respectively.The rationality of the simulation methods and results were validated by comparing with experimental data. The simulation results indicate that the aspect ratio has a significant impact on the Poiseuille number. Conventional fluid flow theory is fit for researching the fluid flow in microchannels, Po is a constant that is not dependent on the Reynolds number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1484-1490

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Tuckerman, R.F. Pease, High performance heat sinking for VLSI, IEEE Electronic Devices Letters, EDL-2 (1981) 126-129.

DOI: 10.1109/edl.1981.25367

Google Scholar

[2] G. Hetsroni, A. Mosyak, Fluid flow in micro-channels. International Journal of Heat and Mass Transfer[J]. 2005, 48(10): 1982–(1998).

DOI: 10.1016/j.ijheatmasstransfer.2004.12.019

Google Scholar

[3] G. Hetsroni , A. Mosyak. Heat transfer in micro-channels. Comparison of experiments with theory and numerical results. International Journal of Heat and Mass Transfer[J]. 2005, 48(25–26): 5580–5601.

DOI: 10.1016/j.ijheatmasstransfer.2005.05.041

Google Scholar

[4] P. Rosa, T.G. Karayiannis, M.W. Collins. Single-phase heat transfer in microchannels: The importance of scaling effects. Applied Thermal Engineering[J], 2009, 29(17–18): 3447–3468.

DOI: 10.1016/j.applthermaleng.2009.05.015

Google Scholar

[5] Mark E. Steinke, Satish G. Kandlikar. Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences[J], 2006, 45(11): 1073–1083.

DOI: 10.1016/j.ijthermalsci.2006.01.016

Google Scholar

[6] Gian Luca Morini. Single-phase convective heat transfer in microchannels: a review of experimental results[J]. International Journal of Thermal Sciences, 2004, 43(7): 631–651.

DOI: 10.1016/j.ijthermalsci.2004.01.003

Google Scholar

[7] J. Koo, C. Kleinstreuer, Viscous dissipation effects in microtubes and microchannels[J], International Journal of Heat and Mass Transfer2004, 47(14–16): 3159–3169.

DOI: 10.1016/j.ijheatmasstransfer.2004.02.017

Google Scholar

[8] F. Incorpera, Liquid Cooling of Electronic Devices by Single Phase Convection, Wiley, (1999).

Google Scholar

[9] P. Gunnasegaran a , H.A. Mohammed. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes[J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 1078–1086.

DOI: 10.1016/j.icheatmasstransfer.2010.06.014

Google Scholar

[10] H.Y. Wu, P. Cheng. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratio[J]. Int. J. Heat Mass Transfer, 2003, 46(14): 2519-2525.

DOI: 10.1016/s0017-9310(03)00106-6

Google Scholar

[11] X.F. Peng, G. P. Peterson. Forced convection heat transfer of single phase binary mixtures through microchannels[J]. Experimental Thermal and Fluid Science, 1996, 12(1): 98-104.

DOI: 10.1016/0894-1777(95)00079-8

Google Scholar

[12] R.K. Shah, A.L. London. Laminar Forced Convection in Ducts, Supplement to Advances in Heat Transfer[M]. Academic Press, (1978).

Google Scholar

[13] Z.X. Li, D.X. Du, Z.Y. Guo, Experimental study on flow characteristics of liquid in circular micro-tubes, Microscale Thermophys. Eng. 7 (2003) 253–265.

Google Scholar

[14] D. Pfund, D. Rector, A. Shekarriz, Pressure drop measurements in a micro-channel, AIChE J. 46 (2000) 1496–1507.

DOI: 10.1002/aic.690460803

Google Scholar

[15] B. Xu, K.T. Ooi, N.T. Wong, W.K. Choi, Experimental investigation of flow friction for liquid flow in micro-channels, Int. Comm. Heat Transfer 27 (8) (2000) 1165–1176.

Google Scholar

[16] I. Papautsky, J. Brazzle, T. Ameel, B. Frazier, Laminar fluid behavior in microchannels using micropolar fluid theory, Sensors Actuators 73 (1999) 101–108.

DOI: 10.1016/s0924-4247(98)00261-1

Google Scholar