[1]
J. Wen, G. Wang, D. Yu, H. Zhao, Y. Liu, Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure, J. Appl. Phys. 97 (2005) 114907.
DOI: 10.1063/1.1922068
Google Scholar
[2]
J. Sun and T. Wu, Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method, Phys. Rev. B. 76 (2007) 104304.
DOI: 10.1103/physrevb.76.104304
Google Scholar
[3]
S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, High-Q micromechanical resonators in a two- dimensional phononic crystal slab, Appl. Phys. Lett. 94 (2009) 051906-3.
DOI: 10.1063/1.3078284
Google Scholar
[4]
M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure, J. Sound Vib. 158 (1992) 377-382.
DOI: 10.1016/0022-460x(92)90059-7
Google Scholar
[5]
Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science. 289 (2000) 1734-1736.
DOI: 10.1126/science.289.5485.1734
Google Scholar
[6]
C. Goffaux, J. Sa' nchez-Dehesa, A. Levy Yeyati, P. Lambin, A. Khelif, J.O. Vasseur, B. Djafari-Rouhani, Evidence of Fano-like interference phenomena in locally resonant materials, Phys. Rev. Lett. 88 (2002) 225502.
DOI: 10.1103/physrevlett.88.225502
Google Scholar
[7]
M. Hirsekorn, P.P. Delsanto, N.K. Batra, P. Matic, Modelling and simulation of acoustic wave propagation in locally resonant sonic materials, Ultrasonics 42 (2004) 231-235.
DOI: 10.1016/j.ultras.2004.01.014
Google Scholar
[8]
C. Goffaux, Sánchez-Dehesa, Two-Dimensional PCs Studied using a Variational Method: Application to Lattices of Locally Resonant Materials, Phys. Rev. B. 67 (2003)144301.
DOI: 10.1103/physrevb.72.099903
Google Scholar
[9]
G. Wang, X. Wen, J. Wen, Y. Liu, Quasi-one-dimensional PCs studied using the improved lumped-mass method: Application to locally resonant beams with flexural wave band gap, Phys. Lett. B 71 (2005) 104302.
DOI: 10.1103/physrevb.71.104302
Google Scholar
[10]
G. Wang, D. Yu, J. Wen, Y. Liu, X. Wen, One-dimensional PCs with locally resonant structures, Phys. Lett. A. 327 (2004) 512-521.
DOI: 10.1016/j.physleta.2004.05.047
Google Scholar
[11]
D. Yu, Y. Liu, G. Wang, C. Li and Q. Qiu, Low frequency torsional vibration gaps in the shaft with locally resonant structures, Phys. Lett. A. 348 (2006) 410-415.
DOI: 10.1016/j.physleta.2005.08.067
Google Scholar
[12]
G. Wang, J. Wen, and X. Wen, Quasi-One-Dimensional Periodic Structure with Locally Resonant Band Gap, J. Appl. Mech. 71 (2005) 104302.
DOI: 10.1115/1.2061947
Google Scholar
[13]
Y Xiao, Brian R. Maceb, J Wena, X Wen, Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators, Phys. Lett. A. 362 (2011) 344-347.
DOI: 10.1016/j.physleta.2011.02.044
Google Scholar
[14]
S. Timoshenko, D. Young, W. Weaker, Vibration Problems in engineering, Wiley, New York (1974).
Google Scholar
[15]
R.Y. Shen, X.X. Huang, Study on Torsional stiffness of Elastic coupling rubber, Noise . Vib. Control (in Chinese). 4 (1997) 13-16.
Google Scholar
[16]
C. Kittel, Introduction to Solid State Physic, Wiley, New York (1986).
Google Scholar
[17]
J. S Jensen, Phononic band gaps and vibrations in one- and two-dimentional mass-spring structures, J. Sound . Vib 266 (2003) 1053-1078.
DOI: 10.1016/s0022-460x(02)01629-2
Google Scholar
[18]
C. Yilmaz and G. Hulbert, Theory of phononic gaps induced by inertial amplification in finite structures, Phys. Lett. A. 374 (2010) 3576-3584.
DOI: 10.1016/j.physleta.2010.07.001
Google Scholar