One-Dimensional Bi-Stage Phononic Band Gap Shaft Structure for Reducing Torsional Vibration

Article Preview

Abstract:

In this paper, a one-dimensional bi-stage phononic band gap (PBG) structure based on double local resonant effects is presented to reduce the torsional vibration for the first time. A unit cell of the bi-stage PBG structure is composed of two harmonic LR oscillators in the radial direction, distributed periodically along the shaft. A new method, combining the transfer matrix method and the lumped-mass method is proposed to study the torsional vibration band gaps of the double PBG-like shaft theoretically and proved by the finite element method. The results show that the mid-gap frequency of the bi-stage PBG structure shaft is lower than that in the one-stage PBG shaft and the relative width of the band gaps reaches 1.3 with the average attenuation of the vibration amplitude about 40dB.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-58

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wen, G. Wang, D. Yu, H. Zhao, Y. Liu, Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure, J. Appl. Phys. 97 (2005) 114907.

DOI: 10.1063/1.1922068

Google Scholar

[2] J. Sun and T. Wu, Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method, Phys. Rev. B. 76 (2007) 104304.

DOI: 10.1103/physrevb.76.104304

Google Scholar

[3] S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, High-Q micromechanical resonators in a two- dimensional phononic crystal slab, Appl. Phys. Lett. 94 (2009) 051906-3.

DOI: 10.1063/1.3078284

Google Scholar

[4] M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure, J. Sound Vib. 158 (1992) 377-382.

DOI: 10.1016/0022-460x(92)90059-7

Google Scholar

[5] Z. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, P. Sheng, Locally resonant sonic materials, Science. 289 (2000) 1734-1736.

DOI: 10.1126/science.289.5485.1734

Google Scholar

[6] C. Goffaux, J. Sa' nchez-Dehesa, A. Levy Yeyati, P. Lambin, A. Khelif, J.O. Vasseur, B. Djafari-Rouhani, Evidence of Fano-like interference phenomena in locally resonant materials, Phys. Rev. Lett. 88 (2002) 225502.

DOI: 10.1103/physrevlett.88.225502

Google Scholar

[7] M. Hirsekorn, P.P. Delsanto, N.K. Batra, P. Matic, Modelling and simulation of acoustic wave propagation in locally resonant sonic materials, Ultrasonics 42 (2004) 231-235.

DOI: 10.1016/j.ultras.2004.01.014

Google Scholar

[8] C. Goffaux, Sánchez-Dehesa, Two-Dimensional PCs Studied using a Variational Method: Application to Lattices of Locally Resonant Materials, Phys. Rev. B. 67 (2003)144301.

DOI: 10.1103/physrevb.72.099903

Google Scholar

[9] G. Wang, X. Wen, J. Wen, Y. Liu, Quasi-one-dimensional PCs studied using the improved lumped-mass method: Application to locally resonant beams with flexural wave band gap, Phys. Lett. B 71 (2005) 104302.

DOI: 10.1103/physrevb.71.104302

Google Scholar

[10] G. Wang, D. Yu, J. Wen, Y. Liu, X. Wen, One-dimensional PCs with locally resonant structures, Phys. Lett. A. 327 (2004) 512-521.

DOI: 10.1016/j.physleta.2004.05.047

Google Scholar

[11] D. Yu, Y. Liu, G. Wang, C. Li and Q. Qiu, Low frequency torsional vibration gaps in the shaft with locally resonant structures, Phys. Lett. A. 348 (2006) 410-415.

DOI: 10.1016/j.physleta.2005.08.067

Google Scholar

[12] G. Wang, J. Wen, and X. Wen, Quasi-One-Dimensional Periodic Structure with Locally Resonant Band Gap, J. Appl. Mech. 71 (2005) 104302.

DOI: 10.1115/1.2061947

Google Scholar

[13] Y Xiao, Brian R. Maceb, J Wena, X Wen, Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators, Phys. Lett. A. 362 (2011) 344-347.

DOI: 10.1016/j.physleta.2011.02.044

Google Scholar

[14] S. Timoshenko, D. Young, W. Weaker, Vibration Problems in engineering, Wiley, New York (1974).

Google Scholar

[15] R.Y. Shen, X.X. Huang, Study on Torsional stiffness of Elastic coupling rubber, Noise . Vib. Control (in Chinese). 4 (1997) 13-16.

Google Scholar

[16] C. Kittel, Introduction to Solid State Physic, Wiley, New York (1986).

Google Scholar

[17] J. S Jensen, Phononic band gaps and vibrations in one- and two-dimentional mass-spring structures, J. Sound . Vib 266 (2003) 1053-1078.

DOI: 10.1016/s0022-460x(02)01629-2

Google Scholar

[18] C. Yilmaz and G. Hulbert, Theory of phononic gaps induced by inertial amplification in finite structures, Phys. Lett. A. 374 (2010) 3576-3584.

DOI: 10.1016/j.physleta.2010.07.001

Google Scholar