Effect of Temperature and Moisture Content on Thermal Conductivity of Green Teas

Article Preview

Abstract:

The thermal conductivity of green teas has been used as engineering parameter in the design of processes and machines for drying, storing and aeration. The thermal conductivity of green teas was determined and its changes with moisture content, bulk density investigated. The thermal conductivity values of green teas increased from 0.036 to 0.438 W m–1 K–1 and from 0.041 to 0.568 W m–1 K–1 for low and high (loose and dense) bulk densities, respectively, as the moistSuperscript texture content increased from 5.3 to 78.7% dry basis. The change of the thermal conductivity of green teas with temperatures at different bulk densities shows that it increased from 0.035 to 0.045 and 0.042 to 0.053 W m–1 K–1, respectively, as the temperatures and bulk density increased. The thermal conductivity values obtained with the high bulk density was higher than those obtained with the low bulk density for green teas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-403

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.E. Sweet, C.G. Haugh: Trans. ASAE 1974, 17 (1), p.56–58.

Google Scholar

[2] S.R. Bhowmik, K.I. Hayakawa: J. Food Sci. 1979, 44 (2), p.469–474.

Google Scholar

[3] M.S. Qashou, R.I. Vachon, Y.W. Touloukian: Thermal conductivity of foods. (ASHRAE Semi-Annual Meeting, New Orleans, LA, 1972. ).

Google Scholar

[4] S.I. Polley, O.P. Snyder, P. Kotnour: Food Technol. 34(1980), p.76–94.

Google Scholar

[5] R.P. Singh, In: Heldman DR, Lund DB, editors. Handbook of food engineering. New York: Marcel Dekker, Inc. (1992).

Google Scholar

[6] V.E. Sweat. In: Rao MA, Rizvi SSH, editors. Engineering properties of foods. 2nd ed. New York: Marcel Dekker, Inc. 1994. p.99–138.

Google Scholar

[7] S. Tavman, I.H. Tavman: Int Commun Heat Mass 1998, 25(5), pp.733-741.

Google Scholar

[8] A.V. MUNDE: J Maharashtra Agric Univ 1998, 23(3), pp.291-294.

Google Scholar

[9] H. Kocabiyik, Kayis¸ B. Oglu, D. Tezer: Int J Food Prop 2009, 12(2), pp.277-285.

Google Scholar

[10] S.K. Dutta, V.K. Nema, R.K. Bhardvaj: J Agr Eng Res 39(1998), pp.269-275.

Google Scholar

[11] A. Alagusundaram, D.S. Jayas, W.E. Muir, D.G. White: T ASAE 1991, 34(4), pp.1784-1788.

Google Scholar

[12] F.C. Hooper, F.R. Lepper: ASHVE Trans 56(1950), pp.309-322.

Google Scholar

[13] C.S. CHANG: T ASAE, 1986, 29(5), pp.1447-1450.

Google Scholar

[14] A. TANSAKUL, P. CHAISAWANG: J Food Eng 73(2006), pp.276-280.

Google Scholar

[15] A. TANSAKUL, R. LUMYONG: Thermal properties of straw mushroom. J Food Eng 87(2008), pp.91-98.

DOI: 10.1016/j.jfoodeng.2007.11.016

Google Scholar

[16] S.K. Dutta, V.K. Nema, R.K. Bhardvaj: J Agr Eng Res 39(1988), pp.269-275.

Google Scholar

[17] M.H. Hsu, J.D. Mannapperuma, R.P. Singh: J Agric Eng Res 49(1991), pp.311-321.

Google Scholar

[18] N.A. Aviara, M.A. Haque: J Food Eng 47(2011), pp.109-113.

Google Scholar

[19] N.A. Aviara, M.A. Haque, L.A.O. Ogunjimi: Int Agrophys 22(2008), pp.291-297.

Google Scholar