Photocatalytic and Self-Cleaning Properties of TiO2-Cu Thin Films on Glass Substrate

Article Preview

Abstract:

TiO2-Cu thin films containing 0 to 1%Cu coated on glass slides were prepared by sol gel-dip coating method. The prepared thin films were synthesized at the temperature of 400 C for 2 h with a heating rate of 10C/min. The microstructures of synthesized TiO2-Cu thin films were characterized by XRD, FT-IR and SEM. The photocatalytic activities of TiO-2Cu thin films were tested using methylene blue (MB) solution under UV irradiation. Finally, the self-cleaning property was evaluated by means of contact angle of water droplet on the films. The results show all samples have the thickness in range of 1 um and surfaces are dense with a large surface area. It can be noted that TiO2-1.0Cu thin films were found to give the highest photocatalytic efficiency and exhibited self-cleaning effect (small contact angle, 17°) under UV irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-413

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taled and X. Portier, Inter. J. hydrogen Energy, doi: 10. 1016/j. ijhydene. 2010. 07. 057.

DOI: 10.1016/j.ijhydene.2010.07.057

Google Scholar

[2] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul and C. Thanachayanont, Ceramics International Vol. 34 (2008), p.1067.

DOI: 10.1016/j.ceramint.2007.09.043

Google Scholar

[3] G.D. Fernando, V.G. Katherine and M. M Claudia, Micro. J. Vol. 39 (2008), p.1333.

Google Scholar

[4] M.J. Alam and D.C. Cameron, J. Sol-Gel Sci. and Tech. Vol. 25 (2002), p.137.

Google Scholar

[5] K. Hirotsugu, T. Koichi, H. Noborn, A. Yoshifumi and D. Shigehito, J. Mater. Chem. Vol. 8 (1998), p. (2019).

Google Scholar

[6] Z.L. He, Z.W. Yu, H.Y. Miao, G.Q. Tan and Y. Liu, Sci. Chaina Ser E-Tech. Sci. Vol. 52 (2009), p.137.

Google Scholar

[7] R.J. Nemanich, J.T. Glass, G. Lucovsky and R.E. Shoroder, J. Vac. Sci. Tech. Vol. A6 (1988), p.1783.

Google Scholar

[8] V.N. Fuflyigin, A.R. Kaul and S.A. Pozigun, J. Dephysique IV Vol. 3 (1993), p.361.

Google Scholar

[9] P. Yinggou and E.L. David, J. Applied Phy. Vol. 93 (2003), p.7957.

Google Scholar

[10] W.T. Chee and M. Jianmin, Thin Solide Films Vol. 517 (2009), p.4921.

Google Scholar

[11] H.H. Mohammad and T. Nasrin, Acta. Chem. Slov. Vol. 52 (2005), p.53.

Google Scholar

[12] T. Aleksanda, D. Pavo and D.F. Nikola, Vacuum Vol. 80 (2005), p.108.

Google Scholar

[13] I. Djerdj, A.M. Tonejc, M. Bijelic, V. Vranesa and A. Turkovic, Vacuum Vol. 80 (2005), p.371.

Google Scholar

[14] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul and C. Thanachayanont, Cer. Inter. Vol. 34 (2008), p.1067.

DOI: 10.1016/j.ceramint.2007.09.043

Google Scholar

[15] S.W. Lam, W.Y. Gan, K. Chiang and R. Amal, J. Aus. Cer. Soc. Vol. 44 (2008), p.6.

Google Scholar

[16] T. I-Hsiang, C.S. Jeffery and Y.C. Hsin, J. Catalysis Vol. 221 (2004), p.432.

Google Scholar

[17] S. Weerachai, S. Lek, K. Kalayanee and N. Suthum, J. Adv Mat Research. Vol. 214 (2011), p.149.

Google Scholar

[18] T. Hiroshi, S. Hiromitsu, G. Yasuhito and I. Junzo, Neclear Ins. and Methods in Phy. Res. Vol. 206 (2003), p.249.

Google Scholar

[19] K. Miki and W. Sumpun, J. Mat Chem and Phy. Vol. 110 (2008), p.166.

Google Scholar

[20] C. Wen, H. Ssu, T. Jeou, C. Hsin and H. Tzu, J. Chemosphere. Vol. 66 (2007), p.2142.

Google Scholar