[1]
Zhou Xiao-qin, Li Hua-qiang, Liu Jie. ANSYS three-dimensional thermal analysis and its application[J]. Journal of Wuhan Transportation University, 1999, 23(1): 9-10.
Google Scholar
[2]
ZHANG Guo-zhi, HU Ren-xi, CHEN Ji-gang. ANSYS10. 0 thermal finite element analysis guide Windows tutorial[M]. Beijing: China Machine Press, 2007. 6: 2-3.
Google Scholar
[3]
YIN Jun-hui, QIN Jun-qi, ZHENG Jian. Simulation and research of heat transfer for minor-caliber rapid-firing gun barrel based on finite volume method[J]. Computer Engineering and Design, 2009, 30 (5): 1279-1280.
Google Scholar
[4]
ZHOU Ke-dong. Analysis of effect of firing on temperature field[D]. Nanjing: China east faculty of engineering, 1991: 109-110.
Google Scholar
[5]
Carlucci D., Cordes J., Morris S. Muzzle Exit (Set Forward) Effects on Projectile Dynamics [R]. Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ. Technical Research Center. AD: ADA455215, Apr (2006).
DOI: 10.21236/ada455215
Google Scholar
[6]
Francisco J.S. Van Krueger K.E. Evaluation of Yuma Proving Grounds Ballistic Arsenal Scoring Methods [D]. Naval Postgraduate School, Monterey. CA. AD: ADA435653, Jun (2005).
Google Scholar
[7]
Bundy M., Newill J., Marcopoli V. A Methodology for Characterizing Gun Barrel Flexure due to Vehicle Motion [J]. Shock and Vibration, 2001, 8(4): 223-228.
DOI: 10.1155/2001/746901
Google Scholar
[8]
Sneck H. J. Main Battle Tank Flexible Gun Tube Disturbance Model: Three-Segment Model [R]. AD: ADA408136, (2002).
DOI: 10.21236/ada408136
Google Scholar
[9]
Cordes J., Vega J., Carlucci D. Design Accelerations for the Army's Excalibur Projectile [R]. Army Armament Research, Development and Engineering Center, Dover, NJ. AD: ADA435761, Jun (2005).
DOI: 10.21236/ada435761
Google Scholar
[10]
Pasquiet J., Matthieu P., Vanhoutte J.J. Crash Gun Device for Many Dynamic and Damage Behavior Analysis [J]. Journal De Physique. IV, 2000, 10(9): 599-604.
DOI: 10.1051/jp4:20009100
Google Scholar