[1]
C. Choi, K.K. Hwang, C. Chae, Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis. Arch Virol, 2004, 149: 875-889.
DOI: 10.1007/s00705-003-0275-6
Google Scholar
[2]
P.J. Sánchez-Cordón, Núñez A, F.J. Salguero, M. Pedrera, M. Fernández de Marco, J.C. Gómez-Villamandos, Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol, 2005, 42: 477-488.
DOI: 10.1354/vp.42-4-477
Google Scholar
[3]
E. Bensaude, J.L. Turner, P.R. Wakeley, D.A. Sweetman, C. Pardieu, T.W. Drew, et al., Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol, 2004, 85: 1029-1037.
DOI: 10.1099/vir.0.19637-0
Google Scholar
[4]
S. Hanash, Disease proteomics. Nature, 2003, 422: 226-232.
Google Scholar
[5]
U. Mathesius, G. Keijzers, S. H. Natera, J. J. Weinman, M. A. Diordjevic, B. G. Rolfe, Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics, 2001, 1: 1424–1440.
DOI: 10.1002/1615-9861(200111)1:11<1424::aid-prot1424>3.0.co;2-j
Google Scholar
[6]
P. Alfonso, J. Rivera, B. Hernáez, C. Alonso, J.M. Escribano, Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics, 2004, 4(7): 2037-(2046).
DOI: 10.1002/pmic.200300742
Google Scholar
[7]
G. A. Smith, L.W. Enquist, Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol., 2002, 18: 136-61.
DOI: 10.1146/annurev.cellbio.18.012502.105920
Google Scholar
[8]
K. Döhner, B. Sodeik, The role of the cytoskeleton during viral infection. Curr. Top Microbiol. Immunol., 2005, 285: 67-108.
Google Scholar
[9]
B. Adenbach, S. Arnold, I. Lee, et al. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim. Biophys. Acta, 2004, 1655: 400–4088.
DOI: 10.1016/j.bbabio.2003.06.005
Google Scholar
[10]
G. Powis, D.L. Kirkpatrick, Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol., 2007, 7(4): 392–397.
Google Scholar
[11]
C. M. Johnson, D. R. Perez, R. French, W. C. Merrick, R. O. Donis, The NS5A protein of bovine viral diarrhoea virus interacts with the alpha subunit of translation elongation factor-1. J Gen Virol, 2001, 82: 2935–2943.
DOI: 10.1099/0022-1317-82-12-2935
Google Scholar
[12]
S. Fukuda, L.M. Pelus, Growth inhibitory effect of Hcc-1/CIP29 is associated with induction of apoptosis, not just with G2/M arrest. Cell Mol. Life Sci., 2006, 62: 1526-1527.
DOI: 10.1007/s00018-005-5093-4
Google Scholar
[13]
C. P. Walczak, B. Tsai, A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J. Virol., 2010, in press.
DOI: 10.1128/jvi.01855-10
Google Scholar