Research on the Cutting Force Induced Error Measurement Method of the CNC Machine Tools

Article Preview

Abstract:

The cutting force induced error has been more important as the hard cutting and hard cutting material used. This paper proposed the direct measurement method of cutting force induced error, which realized the corresponding directly of the cutting force and the value of error in the working process. According to the discrimination of machine error characteristics reflected by the different measuring methods, it puts forward to building the mixed error model based on the measuring technology of one dimension and two dimension. The results could provides the test data and theoretical basis for the mechanism of the processing performance affected by the dynamic behavior of machine tools.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-430

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] The Management Engineering branch of Chinese Mechanical Engineering Society. Development report of numerical control machine tool industry, 2010, 6.

Google Scholar

[2] H.Schwenke,W.Knapp.H.Haitjema,A.Weckenmann,etl. Geometric error measurement and compensation of machines-An update. Annals of the CIRP (CIRP keynote paper), 2008, 57:660-675.

DOI: 10.1016/j.cirp.2008.09.008

Google Scholar

[3] Hocken R, Simpson, A.J. Three dimensional metrology. Annals of the CIRP, 1977, 26(2): 403-408.

Google Scholar

[4] Ni. J. CNC machine accuracy enhancement through real-time error compensation. Journal of Manufacturing Science and Engineering, 1997, 119:717-725.

DOI: 10.1115/1.2836815

Google Scholar

[5] P.H. Pereira, R.J. Hocken. Characterization and compensation of dynamic errors of a scanning coordinate measuring machine. Precision Engineering, 2007, (31):22-32

DOI: 10.1016/j.precisioneng.2006.01.006

Google Scholar

[6] Zhang G, Veale R, Charlton T, Borchardt B, Hocken R. Error compensation of Coordinate Measuring Machines. Annals of the CIRP, 1985, 34(1):445-448.

DOI: 10.1016/s0007-8506(07)61808-3

Google Scholar

[7] Anthony Chukwujekwu Okafor,Yalcin M. Ertekin. Vertical machining center accuracy characterization using laser interferometer part 1. Linear positional errors.Journal of Materials Processing Technology, 2000, 105:394-406.

DOI: 10.1016/s0924-0136(00)00661-0

Google Scholar

[8] Bryan JB.A Simple Method for Testing Measuring Machines and Machin Tools. Precision Engineering, 1981, 4(2):61-69.

Google Scholar

[9] Soichi Ibaraki,Atsushi Matsubara.On the magnification of two-dimensional contouring errors by using contour-parallel offsets. Precision Engineering, 2009, 33:322-326.

DOI: 10.1016/j.precisioneng.2008.09.002

Google Scholar

[10] R. Ramesh, M.A. Mannan, N. Poo, Error compensation in machine tools—a review. Part I: Geometric, cutting force induced and fixture dependent errors. International Journal of Machine Tools and Manufacture, 2000, 40:1235-1256.

DOI: 10.1016/s0890-6955(00)00009-2

Google Scholar

[11] Ziegert J C, Mize C D. The laser ball bar: a new instrument for machine tool metrology. Precision Engineering, 1994, 16(4):259-267.

DOI: 10.1016/0141-6359(94)90002-7

Google Scholar

[12] Umetsu K, Furutnani R, Osawa S, Takatsuji T, Kurosawa T. Geometric Calibration OF A Coordinate Measuring Machine Using a Laser Tracking System. Measurement Science & Technology, 2005, 16:2466-2472.

DOI: 10.1088/0957-0233/16/12/010

Google Scholar

[13] B.Bringmann, W. Knapp. Machine tool calibration: Geometric test uncertainty depends on machine tool performance. Precision Engineering, 2009, 33:524-529.

DOI: 10.1016/j.precisioneng.2009.02.002

Google Scholar

[14] R. Ramesh, M.A. Mannan, N. Poo, Error compensation in machine tools—a review. Part II: Thermal errors.International Journal of Machine Tools and Manufacture, 2000, 40: 1257- 1284.

DOI: 10.1016/s0890-6955(00)00010-9

Google Scholar

[15] Donmez M.A. Blomquist D.S. Hocken R.J. Liu C.R.,and M.M. Barash. A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation. Precision Engineering, 1986, 8(4):187-196.

DOI: 10.1016/0141-6359(86)90059-0

Google Scholar

[16] J. C. Liang, H. F. Li, J. X. Yuan and J. Ni. A Comprehensive Error Compensation System for Correcting Geometric, Thermal, and Cutting Force-Induced Errors. International Journal of Advanced Manufacturing Technology, 1997, 13:708-712.

DOI: 10.1007/bf01179070

Google Scholar

[17] X. Li. Real-time prediction of workpiece errors for a CNC turning centre. Part 4. Cutting-Force-Induced Errors. International Journal of Advanced Manufacturing Technology, 2001, 17:665–669.

DOI: 10.1007/pl00003948

Google Scholar

[18] Sin-Young Lee, Jang Moo Lee. Specific Cutting Force Coefficients Modeling of End Milling by Neural Network. KSME International Journal, 2000, VoL 14, No. 6: 622-632.

DOI: 10.1007/bf03184438

Google Scholar

[19] Tony L. Schmitz, John C. Ziegert, J. Suzanne Canning, etl. Csae study: A comparison of error sources in high-speed milling. Precision Engineering, 2008, (32): 126-133.

DOI: 10.1016/j.precisioneng.2007.06.001

Google Scholar

[20] Jiliweisi, Yang Jianguo, Wu Hao. The mixed compensation system of cutting force induced error. Transaction of Nanjing University of Aeronautics and Astronautics, 2005, 11 (supplement): 118-120.

Google Scholar

[21] Wu Hao, Yang Jianguo, Zhang Hongtao, Guo Qianjian. comprehensive kinematic modeling of cutting force induced error in three axis CNC milling machine. Chinese Mechanical Engineering, 2008, 9(16):1908-1911.

Google Scholar

[22] Xiong Youlun. The mathematical method of precision measurement. Beijing: Chinese Measuring Press,1989.5.

Google Scholar