[2]
Jingyao Liu. Theory research and quality prediction on metal tube bending formation[D]. (2009).
Google Scholar
[3]
Rao K P , Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel [J] . Trasactions of the ASME Journal of Engineering Materials and Technology, 1992. 114, 116-123.
DOI: 10.1115/1.2904131
Google Scholar
[4]
Da-xin E, Hua-hui He, Xiao-yi Liu and Ru-xinNing. Spring-back deformation in tube bending. International Journal of Minerals, Metallurgy and Materials. 2009, 16(2): 177-183.
DOI: 10.1016/s1674-4799(09)60030-3
Google Scholar
[5]
HokookLee C.J. VanTyne, David Field, Finite element bending analysis of oval tubes using rotary draw bender for hydroforming applications. Journal of Materials Processing Technology, 2005, 168(2): 327-335.
DOI: 10.1016/j.jmatprotec.2004.11.019
Google Scholar
[6]
Heraldo S, Costa Mattos, Fulvio E. G. Chimisso. NECKING OF ELASTO-PLASTIC RODS UNDER TENSION [J]. Non-Linear Mechanics, 1997, 32(6): 1077-1086.
DOI: 10.1016/s0020-7462(96)00132-1
Google Scholar
[7]
Carlos García-Garino, Felipe Gabaldón, José M. Goicolea. Finite element simulation of the simple tension test in metals[J]. Finite Elements in Analysis and Design, 2006, 42(13): 1187-1197.
DOI: 10.1016/j.finel.2006.05.004
Google Scholar
[8]
Q.H. Bui, R. Bihamta. Investigation of the formability limit of aluminium tubes drawn with variable wall thickness [J]. Journal of Materials Processing Technology, 2011, 211(3): 402-414.
DOI: 10.1016/j.jmatprotec.2010.10.016
Google Scholar
[9]
Moody J, DarkenC. Fast learning in networks of locally-tuned processing units. 1989(01).
Google Scholar
[10]
Gaojuan. Artificial Neural Networks Principle and Simulation Examples. Beijing: China Machine Press, (2003).
Google Scholar
[11]
Hu Shunren, ChenWeimin, ZhangPeng, et al. Research of bridge deflection restoring based on RBF neural networks[J]. Chinese journal of science instrument. 2006, 27(12): 1605-1608.
Google Scholar
[12]
ZengYihui, ZuoQingsong, LiYide, et al. Study on control method of numerical control machining process for difficult processed metal materials based on RBF neural network.
Google Scholar