Finite Element Analysis for the Influence of Nanoparticles on the Thermal Resudual Stressinfiber Reinforced Composite

Article Preview

Abstract:

In the present work, the finite element analysis was employed to study the distribution and level of thermal residual stress generated in matrix reinforced with SO2 nanoparticles. Using Cohesive Element as the bonding of the interface between fiber and matrix, three–dimensional finite element models of periodic cells were established. The results of the models with and without nanoparticles were compared. The residual thermal stressdue to the mismatch of the thermal expansion coefficients between matrix and fibers, especially theshear stress in the interface, decreased with nanoparticles, which could explain the reinforcing mechanism of nanoparticles. Our numerical study can be of great significance in designing new composites with high performance

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-215

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Kinloch, K. Masania, A.C. Taylor, S. Sprenger andD. Egan, The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices, Journal of Materials Science. 43(2008)1151-1154.

DOI: 10.1007/s10853-007-2390-3

Google Scholar

[2] C. Lu and P. Chen, Thermal Residual Stress Distribution in Carbon Fiber/Novel Thermal Plastic Composite, Applied Composite Materials. 15(2008)157-169.

DOI: 10.1007/s10443-008-9064-4

Google Scholar

[3] J. Díaz and L. Rubio, Developments to manufacture structural aeronautical parts in carbon fibre reinforced thermoplastic materials, Journal of Materials Processing Technology. 143(2003)342-346.

DOI: 10.1016/s0924-0136(03)00450-3

Google Scholar

[4] M. Dube, P. Hubert, A. Yousefpour and J. Denault, Resistance welding of thermoplastic composites skin/stringer joints, Composites Part A. 38(2007)2541-2552.

DOI: 10.1016/j.compositesa.2007.07.014

Google Scholar

[5] P. Rosso, B. Fiedler, K. Friedrich and K. Schulte, The influence of residual stresses implicated via cure volume shrinkage on CF/VEUH-composites, Journal of Materials Science. 41 (2006)383-388.

DOI: 10.1007/s10853-005-2619-y

Google Scholar

[6] J. L. Tsai and Y. K. Chi, Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays, Composites Part B. 39 (2008)714-721.

DOI: 10.1016/j.compositesb.2007.05.005

Google Scholar

[7] M. Hojo, M. Mizuno, T. Hobbiebrunken, T. Adachi, M. Tanaka and S. K. Ha, Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation, Composites Science and Technology. 69 (2009).

DOI: 10.1016/j.compscitech.2008.08.032

Google Scholar

[8] J.H. You, W. Lutz, H. Gerger, A. Brendel, C. Höschen, S. Schmauder, Fiber push-out study of a copper matrix composite with an engineered interface Experiments and cohesive element simulation, International Journal of Solids and Structures. 46(2009).

DOI: 10.1016/j.ijsolstr.2009.08.021

Google Scholar

[9] G. Carlos, L.L. Javier, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression Microscopic mechanisms and modeling, Composites Science and Technology. 67(2007)2795-2860.

DOI: 10.1016/j.compscitech.2007.02.001

Google Scholar

[10] C. Balzani, W. Wagner, An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates, Engineering Fracture Mechanics. 75(2008)2597-2615.

DOI: 10.1016/j.engfracmech.2007.03.013

Google Scholar

[11] S. S. Yeong, P. J. Shailendra, K. T. Ramesh, An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites, ActaMaterialia. 57(2009)5848-5861.

DOI: 10.1016/j.actamat.2009.08.010

Google Scholar

[12] L. M. Jr, P. Brøndsted, Micromechanisms of damage in unidirectional fiber reinforced composites 3D computational analysis, Composites Science and Technology. 69(2009)1036-1044.

DOI: 10.1016/j.compscitech.2009.01.022

Google Scholar

[13] J. LLorca, C. González, J. M. Molina-Aldareguía, J. Segurado, R. Seltzer, F. Sket, M. Rodríguez, S. Sádaba, R. Muñoz, and L.P. Canal, Multiscale Modeling of Composite Materials a Roadmap Towards Virtual Testing, Advanced Materials, 23(2011).

DOI: 10.1002/adma.201101683

Google Scholar

[14] Z. Y. Jiang, H. Zhang, Z. Zhang, H. Murayama and K. Okamoto, Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix, Composites Part A. 39 (2008)1762-1767.

DOI: 10.1016/j.compositesa.2008.08.005

Google Scholar

[15] F. Bouafia, B. Serier and B. A. B. Bouiadjra, Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite, Computational Materials Science . 54 (2012) 195-203.

DOI: 10.1016/j.commatsci.2011.10.030

Google Scholar

[16] M. V. Rao, P. Mahajan, R. K. Mittal, Effect of architecture on mechanical properties of carbon/carbon composites, Composite Structures. 83 (2008)131-142.

DOI: 10.1016/j.compstruct.2007.04.003

Google Scholar

[17] K. H. Lee, S. Moorthy, S. Ghosh. Multiple scale computational model for damage in composite materials, Computer Methods in Applied Mechanics and Engineering. 172(1999)175-201.

DOI: 10.1016/s0045-7825(98)00229-1

Google Scholar