Nonlinear Oscillations of Functionally Graded Materials Rectangular Thin Plates with Parametrical and External Excitations

Article Preview

Abstract:

Nonlinear oscillations of a simply supported functionally graded materials (FGM) rectangular plate under one-to-one internal resonance are investigated in this paper. The FGM rectangular thin plate is subjected to the transversal and in-plane excitations. Material properties are assumed to be temperature-dependent. Based on the Galerkin’s method, a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities governing equations of motions for the FGM rectangular thin plate is derived. The averaged equations are obtained by the method of multiple scales. Numerical simulations illustrate that there exist nonlinear oscillations for the FGM rectangular thin plate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-203

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yamanoushi, M. Koizumi, T. Hiraii, and I. Shiota, in: Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan , (1990).

Google Scholar

[2] M. Koizumi: Ceramic Transactions, Functionally Gradient Materials Vol. 34 (1993), p.3.

Google Scholar

[3] G. N. Parveen and J. N. Reddy: Int. J. Solid Struc. Vol. 35 (1998), p.4457.

Google Scholar

[4] Z. Q. Cheng and R. C. Batra: J. Sound Vib. Vol. 229 (2000), p.879.

Google Scholar

[5] J. Yang and H. S. Shen: Compos. Struct. Vol. 54 (2000), p.497.

Google Scholar

[6] J. Yang and H. S. Shen: J. Sound Vib. Vol. 255 (2002), p.579.

Google Scholar

[7] J. Yang and H. S. Shen: J. Sound Vib. Vol. 261 (2003), p.871.

Google Scholar

[8] Y. X. Hao, L. H. Chen, W. Zhang and J. G. Lei: J. Sound Vib. Vol. 312 (2008), p.862.

Google Scholar

[9] J. Yang, Y. X. Hao, W. Zhang and S. Kitipornchai: Nonlinear Dynam. Vol. 59 (2010), p.207.

Google Scholar

[10] W. Zhang, J. Yang and Y. X. Hao: Nonlinear Dynam. Vol. 59 (2010) p.619.

Google Scholar

[11] S. B. Li, W. Zhang and Y. X. Hao: Int. J. Nonlinear Sci. Numer. Simul. Vol. 11 (2010), p.351.

Google Scholar

[12] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, New York 2004).

Google Scholar

[13] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (Wiley-Interscience, New York 1979).

Google Scholar