Supercontinuum Generation in Nonperiodic Photonic Crystal Fibers and its Application in Frequency Metrology

Article Preview

Abstract:

We generated supercontinuum by utilizing photonic crystal fibers with randomly distributed air holes in the cladding and successfully applied it to optical frequency metrology. Ultra-broad spectra covering a range from the UV to the near infrared were obtained by launching 80 fs Ti: sapphire laser pulses into nonperiodic photonic crystal fibers. In the meanwhile, the experimental results revealed that the distribution of the output spectrum depended on the polarization state of the seeding pulses. Besides, taking advantage of this supercontinuum, we also acquired the clear beat signals by using a new scheme in optical frequency metrology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hartung, A. M. Heidt, and H. Bartelt, Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation, Opt. Express. 19(8) (2011)7742–7749.

DOI: 10.1364/oe.19.007742

Google Scholar

[2] Information on http: /www. opticsinfobase. org/abstract. cfm?URI=NP-2012-JW4D. 1.

Google Scholar

[3] P. Falk, M. Frosz, and O. Bang, Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths, Opt. Express. 13(19) (2005)7535–7540.

DOI: 10.1364/opex.13.007535

Google Scholar

[4] M. -L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, Supercontinuum generation at 1. 06 mum in holey fibers with dispersion flattened profiles, Opt. Express14(10), 4445–4451 (2006).

DOI: 10.1364/oe.14.004445

Google Scholar

[5] L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express. 19(6) (2011)4902–4907.

DOI: 10.1364/oe.19.004902

Google Scholar

[6] A. Hartung, A. M. Heidt, and H. Bartelt, Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers, Opt. Express. 19(13) (2011)12275–12283.

DOI: 10.1364/oe.19.012275

Google Scholar

[7] R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, Ultrabroadband supercontinuum generation in a CMOS-compatible platform, Opt. Lett. 37(2012)1685-1687.

DOI: 10.1364/ol.37.001685

Google Scholar

[8] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, Laser frequency combs for astronomical observations, Science. 321(5894) (2008).

DOI: 10.1126/science.1161030

Google Scholar

[9] S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber, J. Opt. Soc. Am. B 27(3), (2010)592–598.

DOI: 10.1364/josab.27.000592

Google Scholar

[10] Tanya M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Rchardson., Opt. Lett. 25, (2000)206-210.

Google Scholar

[11] T. A. Birks, J. C. Knight, and P. St. J. Russell., Opt. Lett. 22, (1997)961-964.

Google Scholar

[12] D. Mogilevtsev, T. A. Birks, and P. St. J. Russell., Opt. Lett. 23, (1998)1662-1666.

Google Scholar

[13] A. Feffando, E. Silvestre, J. Miret, P. Andres, and M. Andrés., Opt. Lett. 24, (1999)276-280.

Google Scholar

[14] M. J. Steel, T. P. White, C. Martijn de Sterke, and R. C. McPhedran, and L. C. Botten., Opt. Lett. 26, (2001)488-492.

DOI: 10.1364/ol.26.000488

Google Scholar

[15] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell., Opt. Lett. 25, (2000)1325. -1329.

DOI: 10.1364/ol.25.001325

Google Scholar

[16] Fiorenzo G. Omenetto, Anatoly Efimov and Antoinette J. Taylor., Optics Express. 11, (2003)61-65.

Google Scholar

[17] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch., Opt. Lett. 24, (. 1999)881-886.

Google Scholar

[18] A. Apolonski, A. Poppe, G. Tepea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz., Phy. Rev. Lett. 85, (2000)740-746.

DOI: 10.1103/physrevlett.85.740

Google Scholar

[19] David J. Jones, Scott A. Diddams, Jinendra K. Ranka, Andrew Stentz, Robert S. Windeler, John L. Hall, Steven T. Cundiff., Science, 288, (2000)635-639.

DOI: 10.1126/science.288.5466.635

Google Scholar

[20] Scott A. Diddams, David J. Jones, Jun Ye, Steven T. Cundiff, and John L. Hall et al., Phy. Rev. Lett. 84, (2000)5102-5107.

Google Scholar

[21] Zhiyi Wei, Yohei Kobayashi and Kenji Torizuka., Opt. Lett. 27, (2002)2121-2125.

Google Scholar