High Flux Nanofiltration Membranes Prepared by Dynamic Self-Assembly of PSS-co-MA and PAH for CuCl2 Removal

Article Preview

Abstract:

A series of nanofiltration membranes with high flux at low operating pressure were prepared by dynamic self-assembly of poly (styrenesulfonic acid sodium salt) (PSS), poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSS-co-MA) and poly (allylamine hydrochloride) (PAH) on the modified polyacrylonitrile (PAN) membrane. Fourier transform infrared spectroscopy (FTIR-ATR) testified that the polyelectrolyte could successfully deposit on the surface of the modified polyacrylonitrile ultrafiltration membrane. The effects of substrates, assemble bilayer number and the capping PAH solution concentration, operating pressure and CuCl2 concentration on CuCl2 removal were investigated. The [PAH/PSS] 1 PAH/PSS-co-MA/PAHc NF membrane composed of only 2.5 bi-layers displayed 88.9% CuCl2 rejection and the permeate flux was 25.1 L/ m2.h when the operating pressure was 0.2 MPa. The CuCl2 rejection was still above 86.3% when the operation pressure increased to 0.8 MPa, meanwhile, the permeate flux increased greatly to 85.8 L/ m2.h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-211

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hilal, H. A1-Zoubi, N.A. Darwish, A.W. Mohammad, M. Abu Arabi, A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy, Desalination, 170 (2004) 281-308.

DOI: 10.1016/j.desal.2004.01.007

Google Scholar

[2] Z.P. Zhao, J.D. Li, D.X. Zhang, C.X. Chen, Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma I. Graft of acrylic acid in gas , J. Membr. Sci., 232 (2004) 1–8.

DOI: 10.1016/j.memsci.2003.11.009

Google Scholar

[3] A. Toutianoush, L. Krasemann, B. Tieke, Polyelectrolyte multilayer membranes for pervaporation separation of alcohol/water mixtures, Colloids & Surf. A: Physicochemical and Engineering Aspects, 198–200 (2002) 881–889.

DOI: 10.1016/s0927-7757(01)01015-9

Google Scholar

[4] W.Q. Jin, A. Toutianoush, and B. Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir, 19 (2003) 2550-2553.

DOI: 10.1021/la020926f

Google Scholar

[5] G.J. Zhang , X. Gao, S.L. Ji , Z.Z. Liu, Electric field-enhanced assembly of polyelectrolyte composite membranes, J. Membr. Sci., 307 (2008) 151–155.

DOI: 10.1016/j.memsci.2007.09.030

Google Scholar

[6] H.Y. Deng, Y.Y. Xu, B.K. Zhu, X.Z. Wei , F. Liu, Z.Y. Cui, Polyelectrolyte membranes prepared by dynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSS-CO-MA)for nanofiltration (I) J. Membr. Sci. 323 (2008) 125–133.

DOI: 10.1016/j.memsci.2008.06.028

Google Scholar

[7] W. Yantasee, Y.H. Lin, G. E. Fryxell, K. L. Alford, B. J. Busche, and C. D. Johnson, Selective removal of copper(II) from aqueous solutions using fine-Grained activated carbon functionalized with amine, Ind. Eng. Chem. Res., 43 (2004) 2759-2764.

DOI: 10.1021/ie030182g

Google Scholar

[8] E.R. Nightingale, JR., Phenomenological theory of ion solvation, Effective radii of hydrated ions, J. phys. chem., 63 (1959) 1381-1387.

DOI: 10.1021/j150579a011

Google Scholar

[9] D. Yoo, S. S. Shiratori, and M. l F. Rubner, Controlling bilayer composition and surface wettability of sequentially, adsorbed multilayers of weak polyelectrolytes, Macromolecules, 31(1998) 4309-4318.

DOI: 10.1021/ma9800360

Google Scholar

[10] S. U. Hong, R. Malaisamy, and M. L. Bruening, Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23 (2007) 1716-1722.

DOI: 10.1021/la061701y

Google Scholar