The Influence of the Hydrothermal Temperature on the Morphologies and the Optical Absorption Properties of CuO Microrods

Article Preview

Abstract:

CuO microrods with a diameter range of 1-2 μm are successfully synthesized with 1 m mol CuCl2 as copper source and 1 m mol Na2CO3 as auxiliary salt at 240 °C for 24 h via the simple hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by XRD (X-ray diffraction), SEM (Scanning electron microscope) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is CuO. SEM analysis confirms that the increase of the reaction temperature is propitious to synthesize CuO microrods. And UV-VIS measurements show that CuO microrods have a good optical absorption property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-18

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. E. Rakhshani: Solid State Electron., Vol. 29 (1986), p.7.

Google Scholar

[2] M. R. Norman and A. Freeman: J. Phys. Rev. B, Vol. 33 (1986), p.8896.

Google Scholar

[3] Y. P. Sukhorukov, N. N. Loshareva, A. A. Samokhvalov, S. V. Naumov, A. S. Moshvin and A. S. Ovchinnikov: J. Magn. Magn. Mater., Vol. 183 (1998), p.356.

Google Scholar

[4] J. B. Reitz and E. I. Solomon: J. Am. Chem. Soc., Vol. 120 (1998), p.11467.

Google Scholar

[5] W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang and S. Yang: J. Cryst. Growth, Vol. 291 (2006), p.479.

Google Scholar

[6] C. L. Zhu, C. N. Chen, L. Y. Hao, Y. Hu and Z. Y. Chen: J. Cryst. Growth, Vol. 263 (2004), p.473.

Google Scholar

[7] W. Jisen, Y. Jinkai, S. Jinquan and B. Ying: Mater. Des., Vol. 25 (2004), p.625.

Google Scholar

[8] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta and J. V. Yakhmi: J. Cryst. Growth, Vol. 289 (2006), p.670.

DOI: 10.1016/j.jcrysgro.2005.11.111

Google Scholar

[9] X. Song, H. Yu and S. Sun: J. Colloid Interf. Sci., Vol. 289 (2006), p.588.

Google Scholar

[10] R. V. Kumar, Y. Diamant and A. Gedanken: Chem. Mater., Vol. 12 (2000), p.2301.

Google Scholar

[11] A. A. Eliseev, A. V. Lukashin, A. A. Vertegel, L. I. Heifets, A. I. Zhirov and Y. D. Tretyakov: Mater. Res. Innovations, Vol. 3 (2000), p.308.

Google Scholar

[12] J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia and X. Q. Xin: J. Solid State Chem., Vol. 147 (2000), p.516.

Google Scholar

[13] K. Borgohain, J. B. Singh, M. V. Rama Rao, T. Shripathi and S. Mahamuni: Phys. Rev., Vol. 61 (2000), p.11093.

DOI: 10.1103/physrevb.61.11093

Google Scholar

[14] J. Q. Yu, Z. Xu and D. Z. Jia: Chin. J. Functional Mater. Instrum., Vol. 5 (1999), p.267.

Google Scholar

[15] S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang and L. Wang: Rep. Res. Cent. Ion Beam Technol., Hosei Univ., Vol.18 (Suppl.) (2000), p.153.

Google Scholar

[16] T. J. B. Holland and S. A. T. Redfern: Miner. Mag., Vol. 61 (1997), p.65.

Google Scholar