Synthesis and Structure Properties of Free-Standing TiO2 Nanotube Arrays

Article Preview

Abstract:

TiO2 nanotube arrays were made on the titanium foil by the method of anodic oxidation. Large-area crystallized free-standing TiO2 nanotube arrays were fabricated by a two-step anodization, and then crystallized by different heat-treatment processes. The morphology and structure of the TiO2 nanotube arrays were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the diameter of the TiO2 nanotube at the voltage range of 50V~65V was about 100nm. Anatase phase is the unique phase observed in free-standing TiO2 arrays annealed at the temperature of 400°C~610°C. However, crystallographic orientation of anatase phase is influenced by the annealing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-34

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.Y. Wang, J.H. Zhang and Z.Y. Liu: Fine Chemicals, Vol. 20 (2003) No.6, p.333. (In Chinese)

Google Scholar

[2] X.H. Li, X.G. Zhang and H.L Li: Chemical Journal of Chinese Universities, Vol. 22 (2001) No.1, p.130. (In Chinese)

Google Scholar

[3] W.Z. Wang, O.K. Varghese, M. Paulose and C.A. Grimes: J. Mater. Res, Vol. 19 (2004) No.2, p.417.

Google Scholar

[4] Q. Wang, K. Zhu, N.R. Neale and A.J. Frank: Nano Letters, Vol. 9 (2009) No.2, p.806.

Google Scholar

[5] Y.J. Zhang, X.F. Li, D. Chen, N.H. Ma, X.S. Hua and H.W. Wang: Scripta Materialia, Vol. 60 (2009), p.543.

Google Scholar

[6] J.Q. Geng, D. Yang, J.H. Zhu, D,M. Chen and Z.Y. Jiang: Materials Research Bulletin, Vol. 44 (2009), p.146.

Google Scholar

[7] P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase and S. Yoshikawa: Journal of Crystal Growth, Vol. 311 (2009) No.3, p.757.

DOI: 10.1016/j.jcrysgro.2008.09.092

Google Scholar

[8] T. Kang, A.P. Smith, B.E. Taylor and M.F. Durstock: Nano Letters, Vol. 9 (2009) No.2, p.601.

Google Scholar

[9] P. Roy, D. Kim, I. Paramasivam and P. Schmuki: Electrochemistry Communications, Vol. 11 (2009) No.5, p.1001.

Google Scholar

[10] D.W. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen and E.C. Dickey: J. Mater. Res., Vol. 16 (2001) No.12, p.3331.

Google Scholar

[11] B. O'Regan and M. Gratzel: Nature, Vol. 353 (1991) No.10, p.737.

Google Scholar

[12] Z.S. Wang, H. Kawauchi, T. Kashima and H. Arakawa: Coordination Chemistry Review, Vol. 248 (2004), p.1381.

Google Scholar

[13] Q.W. Chen and D.S. Xu: J. Phys. Chem., Vol. 113 (2009), p.6310.

Google Scholar

[14] S.L. Wei, X. He, F.L. Sun and Z.Y. Zhong: New Chemical Materials, Vol. 36 (2008) No.11, p.91. (In Chinese)

Google Scholar

[15] Y.K. Lai, L. Sun, J. Zuo and C.J. Lin: Wuli Huaxue Xuebao, Vol. 20 (2004) No.9, p.1063. (In Chinese)

Google Scholar

[16] H.J. Tao, L. Qin, L. Wang and J. Tao: The Chinese Journal of Nonferrous Metals, Vol. 17 (2007) No.5, p.693. (In Chinese)

Google Scholar

[17] J. Li, J. Luo and Z.W. Peng: Journal of Inorganic Materials, Vol. 25 (2010) No.5, p.490.

Google Scholar

[18] E.Hendry, M. Korberg, B. O'Regan and M. Bonn: Nano Letters, Vol. 6 (2006) No.4, p.755.

Google Scholar