W-Doped VO2 (M) with Tunable Phase Transition Temperature

Article Preview

Abstract:

W-doped VO2 (B) nanoneedles were successfully synthesized by solgel combing with hydrothermal treatment, in which the polyethylene glycol (PEG) was used as both surfactant and reducing. The metastable VO2 (B) was completely transformed to thermochromic VO2 (M) after annealing at high purity N2 atmosphere. The DSC results exhibit a strong crystallographic transition, and the phase transition temperature of VO2 (M) can be reduced to about 38 °C by W-doping. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) were used to characterize the morphology and crystalline structure of the samples. The variable-temperature infrared transmittance spectra of VO2 (M) demonstrate their potential applications in energy saving field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

483-487

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.J. Morin: Phys. Rev. Lett, Vol. 3 (1959), P. 34.

Google Scholar

[2] C. Cao, Y. Gao and H. Luo: J. Phys. Chem. C, Vol. 112 (2008), P. 18810.

Google Scholar

[3] F. Théobald: J. Less Common Met, Vol. 53 (1977), P. 55.

Google Scholar

[4] C. Leroux, G. Nihoul and G. Van Tendeloo: Phys. Rev. B, Vol. 57 (1978), P. 5111.

Google Scholar

[5] D. Hagrman, J. Zubieta, C.J. Warren, L.M. Meyer, M.M.J. Treacy and R.C. Haushalter: J: Solid State Chem, Vol. 138 (1998), P. 178.

DOI: 10.1006/jssc.1997.7575

Google Scholar

[6] J. Ni, W. Jiang, K. Yu, Y. Gao and Z. Zhu: Electrochim. Acta, Vol. 56 (2011), P. 2122.

Google Scholar

[7] T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel and D. Vernardou: Chem. Mater, Vol. 16 (2004), P. 744.

Google Scholar

[8] G. Xu, P. Jin, M. Tazawa and K. Yoshimura: Sol. Energy Mater. Sol. Cells, Vol. 83 (2004), P. 29.

Google Scholar

[9] J.M. Wu and L.B. Liou: J. Mater. Chem, Vol. 21 (2011), P. 549.

Google Scholar

[10] C.B. Greenberg: Thin Solid Films, Vol. 251 (1994), P. 81.

Google Scholar

[11] B. Hu, Y. Ding, W. Chen, D. Kulkarni, Y. Shen, V.V. Tsukruk and Z.L. Wang: Adv. Mater, Vol. 22 (2010), P. 5134.

Google Scholar

[12] E. Strelcov, Y. Lilach and A. Kolmakov: Nano Lett, Vol. 9 (2009), P. 2322.

Google Scholar

[13] C. Wu, X. Zhang, J. Dai, J. Yang, Z. Wu, S. Wei and Y. Xie: J. Mater. Chem, Vol. 21 (2011), P. 4509.

Google Scholar

[14] S. Ji, Y. Zhao, F. Zhang and P. Jin: J. Cryst. Growth, Vol. 312 (2010), P. 282.

Google Scholar

[15] L. Whittaker, T.-L. Wu, C.J. Patridge, G. Sambandamurthy and S. Banerjee: J. Mater. Chem, Vol. 21 (2011), P. 5580.

Google Scholar

[16] L. Whittaker, C. Jaye, Z.G. Fu, D.A. Fischer and S. Banerjee: J. Am.Chem. Soc, Vol. 131 (2009), P. 8884.

Google Scholar

[17] J.-H. Son, J. Wei, D. Cobden, G. Cao and Y. Xia: Chem. Mater, Vol. 22 (2010), P. 3043.

Google Scholar

[18] S. Yamamoto, N. Kasai and Y. Shimakawa: Chem. Mater, Vol. 21 (2009), P. 198.

Google Scholar

[19] G.R. Patzke, Y. Zhou, R. Kontic and F. Conrad: Angew. Chem. Int. Ed., Vol. 50 (2011), P. 826.

Google Scholar

[20] M. Niederberger, H.-J. Muhr, F. Krumeich, F. Bieri, D. Gunther and R. Nesper: Chem. Mater., Vol. 12 (2000), P. 1995.

Google Scholar

[21] L.-Q. Mai, W. Chen, Q. Xu, J.-F. Peng and Q.-Y. Zhu: Chem. Phys. Lett, Vol. 382 (2003), P. 307.

Google Scholar

[22] W. Chen, J. Peng, L. Mai, Q. Zhu and Q. Xu: Mater. Lett, Vol. 58 (2004), P. 2275.

Google Scholar

[23] M. Li, F. Kong, H. Wang and G. Li: CrystEngComm, Vol. 13 (2011), P. 5317.

Google Scholar

[24] M. Li, F. Kong, Y. Zhang and G. Li: CrystEngComm, Vol. 13 (2011), P. 2204.

Google Scholar

[25] M. Li, F. Kong, L. Li, Y. Zhang, L. Chen, W. Yan and G. Li: Dalton Trans, Vol. 40 (2011), P. 10961.

Google Scholar