On the Controlling of Spherical Ultrasonic Motor

Article Preview

Abstract:

Research team of Prof. Shigeki TOYAMA has developed at Tokyo University of A&T a new type of ultrasonic motor. Its spherical shape confer 2 or 3 degree of freedom in a single joint which makes it suitable for mechatronics field. In order to control the Spherical Ultrasonic Motor a new method by using Hall sensors and a residual magnetic field induced in rotor was implemented. Present paper is dealing with the command and the control of a SUM by using Hall elements and a residual magnetic field induced in rotor. In this way the approach of controlling problem is by using the inverse kinematics and neuronal networks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1115-1125

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Ciupitu, S. Toyama and E. Purwanto (2002). Development of a Method for Controlling the Spherical Ultrasonic Motor by using Magnetic Field, In: Romanian Journal of Technical Science - Applied Mechanics, special number 2002, tome 47, pp.155-158, Editura Academiei Romane, Bucharest, Romania.

Google Scholar

[2] L. Ciupitu, S. Toyama and E. Purwanto (2002). Robotic Arm with 9 DOF Driven by Spherical Ultrasonic Motors. In: Borangiu Ed. Proc. of IFAC Symposium "Intelligent Assembly and Disassembly", Bucharest, Romania, 2003, pp.85-90.

DOI: 10.1016/s1474-6670(17)37666-8

Google Scholar

[3] A. Gray. Modern Differential Geometry. CRE Press, 1998.

Google Scholar

[4] T. Okuyama, E. Purwanto and S. Toyama. Nethods for Detecting an Arbitrary Orientation of a Spherical Ultrasonic Motor. In: J. Mrazek, et al (eds.). Proc. of IX International Conference on the Theory of Machines and Mechanisms, Liberec, Czech Republic, 2004, pp.573-578.

Google Scholar

[5] E. Purwanto and S. Toyama. Control Method of a Spherical Ultrasonic Motor, In: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronis (AIM 2003), Kobe, Japan, July 2003, vol. 2, pp.1321-1326.

DOI: 10.1109/aim.2003.1225534

Google Scholar

[6] E. Purwanto, S. Toyama, N. Toyoda and H. Murakami. Control Method of Spherical Ultrasonic Motor with Magnetized Rotor, In: Proceedings of International Conference ICMA'02, Tampere University of Technology, Finland, 2002, pp.387-394.

Google Scholar

[7] S. Toyama and N. Fukaya. Development of a New Spherical Ultrasonic Motor, . In: D. Fabrizi, Ed. Proceedings of 27-th International Symposium on Industrial Robots "Robotics Toward 2000", 1996, Milano, Italy, pp.453-457.

Google Scholar

[8] P.J. Alsina, N.S. Gehlot, Direct and inverse kinematics of robot manipulator based on modular neural networks, ICARCV, IEEE, pp.1743-7, 3, 1994.

Google Scholar

[9] R. Manseur, D.Keith, A fast algorithm for reverse kinematics analysis of robot manipulator, International Journal of Robotics Research, 7 (3), 1998, pp.622-648.

Google Scholar

[10] D. Gorinevsky, T.Connoly, Comparations of some neural network and scattered data approximations: The inverse manipulator kinematics example, Neural computation, 3 (6), pp.521-542.

DOI: 10.1162/neco.1994.6.3.521

Google Scholar

[11] L.Lee, Training feedforward neural networks: An algorithm givin improved generalization, Neural Networks, 10 (1), pp.61-68, 1997.

DOI: 10.1016/s0893-6080(96)00071-8

Google Scholar

[12] C. Schittenkopf, G.Deco and W. Brauner, Two strategies to avoid overfitting in feedforward networks, Neural Networks, 10 (3), pp.505-516, 1997.

DOI: 10.1016/s0893-6080(96)00086-x

Google Scholar

[13] Olaru, A., Olaru S., Ciupitu, L. Assisted research of the neural network by bach propagation algorithm, OPTIROB 2010 International Conference, Calimanesti, Romania, The RPS Singapore Book, pp.194-200 , 2010.

Google Scholar

[14] Olaru, A., Olaru, S., Paune D., Ghionea A. Assisted research of the neural network, OPTIROB 2010 International Conference, Calimanesti, Romania, The Research Publishing Services Singapore Book, pp.189-194 , 2010.

DOI: 10.4028/www.scientific.net/amr.463-464.1098

Google Scholar

[15] Olaru, A., Olaru, S. Assisted research of the neural network with LabVIEW instrumentation, IEEE ICMENS-2010 Proceedings, Changsha, China, pp.1-8, 2010.

Google Scholar

[16] Olaru, A., Oprean, A., Olaru, S., Paune, D. Optimization of the neural network by using the LabVIEW instrumentation, IEEE ICMERA 2010 Proceedings, ISBN 978-1-4244-8867-4, IEEE catalog number CFP1057L-ART, pp.40-44, 2010.

DOI: 10.4028/www.scientific.net/amr.463-464.1011

Google Scholar

[17] Olaru, A., Olaru, S., Paune, D. Assisted research dynamic neural network with time delay and recurrent links, IEEE ICMERA 2010 Proceedings, ISBN 978-1-4244-8867-4, IEEE catalog number CFP1057L-ART, pp.284-288, 2010.

DOI: 10.4028/www.scientific.net/amr.463-464.1094

Google Scholar

[18] M. Minsky and S. Papert, Perceptrons: an introduction to computational geometry, The MIT Press, Cambridge MA, 1969.

Google Scholar

[19] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proc. of the National Academy of Sciences, 81, 1984, pp.3088-3092.

Google Scholar

[20] Hajduk, M., Semjon, J., Vagaš, M.: Design of the Welding Fixture for the Robotic Station for Spot Weldind Based on the Modular Concept. In: Acta Mechanica Slovaca No. 3/2009, volume 13, pp.30-35, ISSN 1335-2393.

DOI: 10.2478/v10147-010-0044-y

Google Scholar

[21] Hajduk, M., Sukop, M., Baláž, V., Semjon, J., Vagaš, M.: Improving the performance of manufacturing systems based reconfiguring and computer integration. Košice, 2006.

Google Scholar

[22] Páchniková L., Šalátová, M.: Ciele a efekty pružných výrob. In: Acta Mechanica Slovaca, roč. 12, č. 2-A, 2008, pp.451-454, ISSN 1335-2393.

Google Scholar

[23] Páchniková L.: Profiling production cells based on simulation. In: Modelling and designing in production engineering, Lublin 2009, pp.132-137, ISBN 978-83-87833-91-6.

Google Scholar