Microstructure and Magnetic Properties of Microwave Sintered Ni0.5Zn0.5Fe2O4 Ferrite

Article Preview

Abstract:

Ni0.5Zn0.5)Fe2O4 ferrite has been sintered via microwave irradiation. The structural, component and magnetic properties of NiZn ferrite was determined by SEM, X-ray powder diffraction (XRD) and automatic hysteresis loop magnetometer. Results showed that the material sintered by microwave energy at 1220°C for 20min had a high purity (Ni0.5Zn0.5)Fe2O4 phase. The sample obtained magnetic properties of intrinsic coercivity 222A/m, saturation magnetization 332mT, initial permeability 0.20mH/m and maximum permeability 0.58mH/m. Compared with conventional sintering method, microwave sintering of NiZn ferrite is more efficient and reducing soaking time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

705-709

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. V. Pankov and L. A. Bashkirov. Journal of Solid State Chemistry Vol.39(298-308) (1981), pp.298-308.

Google Scholar

[2] R. Lebourgeois, P. Perriat, M. Labeyrie: ICF-6, 1992, pp.1159-1164.

Google Scholar

[3] D. Stoppels: Journal of Magnetism and Magnetic Materials Vol.160 (1996), pp.323-328.

Google Scholar

[4] Hao Zhu, Stoyan Stoyanov, Paul E. Parsons, Brandon McLaughlin, John Q. Xiao: IEEE Applied Power Electronics Conference and Exposition-APEC, 2011, pp.163-167.

Google Scholar

[5] H.L. Chan, K.W.E. Cheng, T.K. Cheung, C.K. Cheung:2nd International Conference on Power Electronics Systems and Applications, 2006, pp.165-169.

Google Scholar

[6] M. Sugimoto: J. Am. Ceram. Soc. Vol.82 (1999), pp.269-280.

Google Scholar

[7] Y. Matsuo, M. Inagaki, T. Tomozawa, and F. Nakao: IEEE Transactions on Magnetics Vol. 37(4) (2001), pp.2359-2361.

DOI: 10.1109/20.951172

Google Scholar

[8] Morteza Oghbaei and Omid Mirzaee: Journal of Alloys and Compounds Vol.494 (2010), pp.175-189.

Google Scholar

[9] João Mascarenhas, Teresa Marcelo: Metal Powder Report Vol.63(4)(2008), pp.12-14.

Google Scholar

[10] R. Roy, D. Agrawal, Cheng Jiping, S. Gedevanishvili: Nature Vol.399 (1999), pp.668-670.

Google Scholar

[11] L.N. Satapathy, G. Swaminathan, S. Vijay Kumar, S. Dhar: International Ceramic Review Vol.61(1) (2012), pp.37-40.

Google Scholar

[12] J. Monteiro, M. A. Valente, T. Santos, L. C. Costa, J. Sousa: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, 2011, pp.561-564.

DOI: 10.1109/imoc.2011.6169274

Google Scholar

[13] G. Roussy, and J. Mercier: J. Appl. Phys. Vol. 62 (1987), pp.1167-1170.

Google Scholar

[14] Xinhua He, Zhide Zhang, Zhiyuan Ling: Ceramics International Vol.34(6)(2008), pp.1409-1412.

Google Scholar