Nonlinear Speed Control of a Series DC Motor

Abstract:

Article Preview

The nonlinear speed control problem of a series dc motor was considered. Based on the nonlinear model built by a hybrid method, in which the local stability was proved by the Lyapunov’s first method to ensure the meaningfulness of the identification of the steady-state-about plant parameters, a sliding-mode control law, with a load torque Luenberger observer and an angular acceleration estimator, was derived theoretically, which effectiveness demonstrated by simulations and experiments. In order to reduce the steady-state error caused by the discrete implementation, a modified sliding-mode control with an auxiliary PI controller was proposed. The experiments show that the modified sliding-mode control law is superior to the PID regulator and the ordinary sliding-mode control law.

Info:

Periodical:

Edited by:

Dunwen Zuo, Hun Guo, Hongli Xu, Chun Su, Chunjie Liu and Weidong Jin

Pages:

612-617

DOI:

10.4028/www.scientific.net/AMM.33.612

Citation:

B. X. Tang and Z. J. Wang, "Nonlinear Speed Control of a Series DC Motor", Applied Mechanics and Materials, Vol. 33, pp. 612-617, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.