Modeling of CH4 Adsorption-Induced Curvature of a Nanocantilever

Article Preview

Abstract:

In this paper, a simulation model is proposed to describe CH4 adsorption-induced curvature of a nanocantilever, based on the energy transfer between potential energy of adsorbates and elastic energy of the bending cantilever. For most cantilever sensors, the basic structure is a silicon beam coated with a metal layer on the top, and aluminum is chosen here. Because the native oxide is usually formed during the fabrication of silicon beams, we have to describe the effect of native oxide on the elastic modulus of the silicon nanobeam in this model based on the semi-continuum method. This model gives a way to predict the curvature of the composite cantilever with native oxide when adsorbing a single layer of CH4 molecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-237

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yu, Q. A. Huang, and X. X. Liu: Applied Surface Science Vol. 255 (2009), p.9404–9408.

Google Scholar

[2] H. Ibach: J. Vac. Sci. Technol. A Vol. 12 (1994), p.2240–2245.

Google Scholar

[3] H. J. Butt: J. Colloid Interface Sci. Vol. 180 (1996), p.251–260.

Google Scholar

[4] G. Y. Chen, T. Thundat, E. A. Wachter and R. J. Warmack: J. Appl. Phys. Vol. 77 (1995), p.3618–3622.

Google Scholar

[5] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer and H. J. Güntherodt: Science Vol. 276 (1997), p.2021–(2024).

Google Scholar

[6] H. Ibach: Surf. Sci. Rep. Vol. 29 (1997), p.193–263.

Google Scholar

[7] R. Raiteri, M. Grattarola, H. J. Butt and P. Skládal: Sens. Actuators B Vol. 79 (2001), p.115–126.

Google Scholar

[8] K. Dahmen, S. Lehwald and H. Ibach: Surf. Sci. Vol. 446 (2000), p.161–173.

Google Scholar

[9] G. G. Stoney: Proc. R. Soc. Lond. Vol. 82 (1909), p.172–175.

Google Scholar

[10] R. Koch: J. Phys. Condens. Matter Vol. 6 (1994), p.9519–9550.

Google Scholar

[11] D. W. Dareing and T. Thundat: J. Appl. Phys. Vol. 97 (2005), p.43526.

Google Scholar

[12] R. E. Martinez, W. M. Augustyniak and J. A. Golovchenko: Phys. Rev. Lett. Vol. 64 (1990), p.1035–1038.

Google Scholar

[13] A. J. Schell-Sorokin and R. M. Tromp: Phys. Rev. Lett. Vol. 64 (1990), p.1039–1042.

Google Scholar