Dual Hesitant Fuzzy Information Aggregation in Decision Making

Article Preview

Abstract:

As an extension of hesitant fuzzy sets, dual hesitant fuzzy sets can depict the attitude when decision makers give their certain or uncertain hesitant fuzzy evaluation information. In this paper, we develop the dual hesitant fuzzy ordered weighted averaging (DHFOWA) operator and the dual hesitant fuzzy ordered weighted geometric (DHFOWG) operator, study their properties, utilize them to aggregate dual hesitant fuzzy decision making information and verify their effectiveness and correctness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

854-859

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.A. Zadeh. Fuzzy sets[J]. Information and Computation, 1965, 8: 338–353.

Google Scholar

[2] K. Atanassov. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20: 87-96.

DOI: 10.1016/s0165-0114(86)80034-3

Google Scholar

[3] D. Dubois, H. Prade. Fuzzy Sets and Systems: Theory and Applications[M]. New York: (1980).

Google Scholar

[4] Miyamoto S. Multisets and fuzzy multisets[J]. Soft Computing and Human-Centered Machines, 2000, 9-33.

DOI: 10.1007/978-4-431-67907-3_2

Google Scholar

[5] Torra V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25 (6): 529-539.

Google Scholar

[6] Torra V, Narukawa Y. On hesitant fuzzy sets and decision[C]. in: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009. 1378-1382.

DOI: 10.1109/fuzzy.2009.5276884

Google Scholar

[7] Na Chen, Zeshui Xu, Meimei Xia. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis[J]. Applied Mathematical Modeling, 2013, 37(4): 2179-2211.

DOI: 10.1016/j.apm.2012.04.031

Google Scholar

[8] Xu Z S, Xia M M. Distance and similarity measures for hesitant fuzzy sets[J]. Information Sciences, 2011, 181(11): 2128-2138.

DOI: 10.1016/j.ins.2011.01.028

Google Scholar

[9] Xu Z S, Xia M M. On distance and correlation Measures of hesitant fuzzy information[J]. International Journal of Intelligent Systems, 2011, 16: 410-425.

DOI: 10.1002/int.20474

Google Scholar

[10] Xia M M, Xu Z S. Hesitant fuzzy information aggregation in decision making[J]. International Journal of Approximate Reasoning, 2011, 52(3): 395-407.

DOI: 10.1016/j.ijar.2010.09.002

Google Scholar

[11] Xia M M, Xu Z S, Chen N. Some hesitant fuzzy aggregation operators with their application in group decision making[J]. Group Decision Negotiation, 2003, 2(22): 259-279.

DOI: 10.1007/s10726-011-9261-7

Google Scholar

[12] B. Zhu, Z.S. Xu, M. Xia, Dual Hesitant Fuzzy Sets[J]. Journal of Applied Mathematics (2012)doi: 10. 1155/2012/879629.

Google Scholar

[13] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on System, Man and Cybernetics, 1988, 18: 183-190.

DOI: 10.1109/21.87068

Google Scholar

[14] Xu Z S, Da Q L. The ordered weighted geometric averaging operators[J]. International Journal of Intelligent Systems, 2002, 17: 709-716.

DOI: 10.1002/int.10045

Google Scholar