Chaotification of Three Different Behaviors in Mira 2 Map

Article Preview

Abstract:

In this paper, we design a controller to chaotify Mira 2 map. To show the correctness, numerical simulations are given in three cases: Case 1, Mira 2 map which is period-1 orbit for some parameters is chaotified, Case 2, Mira 2 map which is converged to an attractor in infinity for some parameters is chaotified, and Case 3, Mira 2 map which is quasi-period orbit for some parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-561

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.J. Freeman: Int. J. Intell. Syst. 10, 71-88 (1995).

Google Scholar

[2] S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L. Spano, and W.L. Ditto: Nature 370(1994), 615-620.

DOI: 10.1038/370615a0

Google Scholar

[3] M.E. Brandt and G. R Chen: IEEE Trans. Circuits Syst. I 44 (1997), 1031-1034.

Google Scholar

[4] W.L. Ditto, M. L Spano, J. Nelf, B. Meadows, J.J. Langberg, A. Bolmann and K. McTeague: Int. J. Bifurc. Chaos 10 (2000), 593-602.

DOI: 10.1142/s0218127400000402

Google Scholar

[5] G. Jakimoski and L.G. Kocarev: IEEE Trans. Circuits Syst. I 48(2001), 163-169.

Google Scholar

[6] L.G. Kocarev, M. Maggio, M. Ogorzalek, L. Pecora, L and K. Yao: IEEE Trans. Circuits Syst. I 48 (2001), 1385 -1527.

DOI: 10.1109/tcsi.2001.972844

Google Scholar

[7] G.R. Chen and D.J. Lai: Int. J. Bifurc. Chaos 6 (1996), 1341-1349.

Google Scholar

[8] G.R. Chen and D.J. Lai: Proc. of IEEE Conference on Decision and Control, San Diego, CA, Dec, pp.367-372 (1997).

Google Scholar

[9] G.R. Chen and D.J. Lai: Int. J. Bifurc. Chaos 8 (1998), 1585-1590.

Google Scholar

[10] X.F. Wang and G. R Chen: Int. J. Bifurc. Chaos 9 (1999), 1435-1441.

Google Scholar

[11] Y. M Shi and G. R Chen: Int. J. Bifurc. Chaos 15 (2005), 547-556.

Google Scholar

[12] Y. M Shi, P. Yu and G.R. Chen: Int. J. Bifurc. Chaos 16(2006), 2615-2636.

Google Scholar

[13] C.P. Li, and G.R. Chen: Chaos, Solitons & Fractals, 18(2003), 807-817.

Google Scholar

[14] C. Mira, A. Barugola and L. Gardini: Chaotic dynamics in two-dimensional nonvertible maps, World Scientific, vol. 20 (1996) of A.

DOI: 10.1142/2252

Google Scholar

[15] D. Styness, W.G. Hanan and S. Pouryahya: The European Physycal Journal B, vol. 77, (2010) 469-478.

Google Scholar

[16] Z.Y. Yang and T. Jiang: submitted to Acta Mathematicae Applicatae Sinica, English Series (2013).

Google Scholar