Structure and Magnetic Properties Investigation of CoZr and CoZrN Thin Films

Article Preview

Abstract:

nanocomposite [(Co91.5Zr8.5)- or CZN films has been prepared by reactive co-sputter deposition method. Nitrogen content plays key role to tune soft magnetic properties. Experimental observation shows that, non-magnetic nitrogen content enhances magnetization and reduces coercivity. The nanostructure is composed of Co nanoclusters embedded in CoN/ZrN matrix, revealed by high resolution transmission electron microscope study. The d-spacing of single Co nanocluster was found to be ~0.22nm corresponding to (002) phase of Cobalt. X-ray diffraction result is in agreement with cubic (400) and (622) phase of CoZr. High electrical resistivity ρs~108μΩ-cm attained corresponding to 16% N2 content films. Hysteresis loop squareness depends on film thickness and coercivity squareness (S*)~0.84, obtained for ~250nm film thickness. A correlated composite nanostructure evolution is responsible for nitrogen induced magnetization and, suggests that film properties can tuned by controlling nitrogen content, in CoN/ZrN composite matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-88

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zeng, S. Sun, J. Li, Z.L. wang, J.P. Liu: Appl. Phys. Lett. 85 (2004) 792.

Google Scholar

[2] T. Wen, K.M. Krishnan, J. Appl. Phys. 109(2011) 5126.

Google Scholar

[3] M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Melinon, and A. Perez: Phys. Rev. Lett. 86 (2001) 4676.

DOI: 10.1103/physrevlett.86.4676

Google Scholar

[4] Y. Qiang, R.F. Sabiryanov, S.S. Jaswal, Y. Liu, H. Heberland and D.J. Sellmyer: Phys. Rev. B. 66 (2002) 64404.

Google Scholar

[5] A.R. Chazen, C.B. Craus, N.G. Chechenin, T. Vystavel, J.T.M.D. Hosson, I. Niesen and D.O. Boerma: IEEE Trans. Magn 38 (2002) 3144.

DOI: 10.1109/tmag.2002.802423

Google Scholar

[6] S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, and G.Y. Yurkov: Russ. Chem. Rev. 74 (2005) 489.

DOI: 10.1070/rc2005v074n06abeh000897

Google Scholar

[7] K.K. Shih and J. Karasinski: J. Appl. Phys. 73(1993)8377.

Google Scholar

[8] M. Jamet, M. Negrier, V. Dupuis J.T. combes, P. Melinon, A. Perez, W. Wernsdorfer, B. Barbara, and B. Baguenard: J. Magn. Mag. Mat. 237 (2001) 293.

Google Scholar

[9] W. Li, Y. Sun, and C,R. Sullivan: IEEE Trans. Magn 41(2005) 3283.

Google Scholar

[10] Jitendra Singh S.K. Gupta, A.K. Singh, P. Kothari, R.K. Kotnala and J. Akhtar: J. Magn. Mag. Mat. 324 (2012) 999.

Google Scholar

[11] H. Ohmori, K. Katori, K, Hayashi, M. Hayakawa and K. Aso: IEEE Trans. Magn 27(1991) 5319.

Google Scholar

[12] M. Komuro, Y. Kozono, M. Hanazono, and Y. Sugita: J. Appl. Phys. 67(1990)5126.

Google Scholar

[13] Akira Yoshihara, KatsutoshiTakanashi, Mamoru Shimoda, Osamu Kitakami and Yutaka Shimada: Jpn. J. Appl. Phys. 33(1994)3927.

DOI: 10.1143/jjap.33.3927

Google Scholar

[14] http: /www. microsense. net/products-vsm. htm, VSM manual.

Google Scholar