[1]
M. G. Volpe, M. Malinconico, E. Varricchio, et al., Polysaccharides as biopolymers for food shelf-life extention: Recent patents, Rec. Pat. Food Nutri. Agri. 2 (2010) 129.
DOI: 10.2174/1876142911002020129
Google Scholar
[2]
M. Wihodo, C. I. Moraru, Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review, J. Food Eng. 114 (2013) 292.
DOI: 10.1016/j.jfoodeng.2012.08.021
Google Scholar
[3]
J. W. Rhim, P. K. W. Ng, Natural biopolymer-based nanocomposite films for packaging applications, Crit. Rev. Food Sci. Nutri. 47 (2007) 411.
Google Scholar
[4]
P. C. Belibi, T. J. Daou, J.M. B. Ndjaka, et al., Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite, J. Food Eng. 115 (2013) 339.
DOI: 10.1016/j.jfoodeng.2012.10.027
Google Scholar
[5]
F. A. Aouada, L. H. C. Mattoso, E. Longo, A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations, J. Thermoplast Compos. Mater. 26 (2013) 109.
DOI: 10.1177/0892705711419697
Google Scholar
[6]
J. A. Mbey, S. Hoppe, F. Thomas, Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties, Carbohydr. Polym. 88 (2012) 213.
DOI: 10.1016/j.carbpol.2011.11.091
Google Scholar
[7]
S. K. Swain, A. K. Pradhan, H. S. Sahu, Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes, Carbohydr. Polym. 94 (2013) 663.
DOI: 10.1016/j.carbpol.2013.01.056
Google Scholar
[8]
A. M. Nafchi, A. K. Alias, S. Mahmud, et al., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide, J. Food Eng. 113 (2012) 511.
DOI: 10.1016/j.jfoodeng.2012.07.017
Google Scholar
[9]
P. R. Chang, R. Jian, J. Yu, et al., Starch-based composites reinforced with novel chitin nanoparticles, Carbohydr. Polym. 80 (2010) 420.
DOI: 10.1016/j.carbpol.2009.11.041
Google Scholar
[10]
I. Neitzel, V. N. Mochalin, J. Niu, et al., Maximizing young's modulus of aminated nanodiamond-epoxy composites measured in compression, Polymer 53 (2012) 5965.
DOI: 10.1016/j.polymer.2012.10.037
Google Scholar
[11]
H. -D. Wang, Q. Yang, C. H. Niu, Functionalization of nanodiamond particles with n, o-carboxymethyl chitosan, Diamond Relat. Mater. 19 (2010) 441.
DOI: 10.1016/j.diamond.2010.01.032
Google Scholar
[12]
Q. Zhang, V. N. Mochalin, I. Neitzel, et al., Fluorescent plla-nanodiamond composites for bone tissue engineering, Biomaterials 32 (2011) 87.
DOI: 10.1016/j.biomaterials.2010.08.090
Google Scholar
[13]
A. Y. Jee, M. Lee, Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds, J. Nanosci. Nanotechnol. 11 (2011) 533.
DOI: 10.1166/jnn.2011.3290
Google Scholar
[14]
X. Zhang, W. Hu, J. Li, et al., A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond, Toxicol. Res. 1 (2012) 62.
DOI: 10.1039/c2tx20006f
Google Scholar
[15]
H. Kim, H. Bin Man, B. Saha, et al., Multiscale simulation as a framework for the enhanced design of nanodiamond-polyethylenimine-based gene delivery, J. Phys. Chem. Lett. 3 (2012) 3791.
DOI: 10.1021/jz301756e
Google Scholar
[16]
L. C. Cheng, H. M. Chen, T. C. Lai, et al., Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells, Nanoscale 5 (2013) 3931.
DOI: 10.1039/c3nr34091k
Google Scholar
[17]
M. Parizek, T. E. L. Douglas, K. Novotna, et al., Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering, Int. J. Nanomed. 7 (2012) (1931).
DOI: 10.2147/ijn.s26665
Google Scholar
[18]
G. I. Olivas, G. V. Barbosa-Canovas, Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity, Lwt-Food Sci. Technol. 41 (2008) 359.
DOI: 10.1016/j.lwt.2007.02.015
Google Scholar
[19]
H. C. Voon, R. Bhat, A. M. Easa, et al., Effect of addition of halloysite nanoclay and sio2 nanoparticles on barrier and mechanical properties of bovine gelatin films, Food Bioproce. Technol. 5 (2012) 1766.
DOI: 10.1007/s11947-010-0461-y
Google Scholar
[20]
S. Mahmoudian, M. U. Wahit, A. F. Ismail, et al., Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids, Carbohydr. Polym. 88 (2012) 1251.
DOI: 10.1016/j.carbpol.2012.01.088
Google Scholar
[21]
B. Duan, P. Sun, X. Wang, et al., Preparation and properties of starch nanocrystals/ carboxymethyl chitosan nanocomposite films, Starch-Starke 63 (2011) 528.
DOI: 10.1002/star.201000136
Google Scholar
[22]
M. Abdollahi, M. Rezaei, G. Farzi, A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan, J. Food Eng. 111 (2012) 3.
DOI: 10.1016/j.jfoodeng.2012.02.012
Google Scholar