Preparation and Characterization of Corn Starch-Nanodiamond Composite Films

Article Preview

Abstract:

Starch-based nanocomposite films were fabricated by the incorporation of different amounts of nanodiamond (ND) particles. These films were characterized by SEM, FT-IR, TGA, tensile testing and water vapor permeability measurement. It was observed that at low loadings, ND dispersed well in starch matrix. However, as the loading amount increased, aggregates as large as several micrometers appeared. The physical blending of ND with starch didnt change the thermal degradation mechanisms of starch films, only increased the char residues. As the ND loading increased, the tensile strength of composite films increased but the elongation at break decreased. However, the water vapor permeability increased as the loading of ND increased due to the increased microspores in films. With further modifications, ND may be considered as a novel of biocompatible nanofillers for reinforcement of biopolymers for food packaging applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-161

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. G. Volpe, M. Malinconico, E. Varricchio, et al., Polysaccharides as biopolymers for food shelf-life extention: Recent patents, Rec. Pat. Food Nutri. Agri. 2 (2010) 129.

DOI: 10.2174/1876142911002020129

Google Scholar

[2] M. Wihodo, C. I. Moraru, Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review, J. Food Eng. 114 (2013) 292.

DOI: 10.1016/j.jfoodeng.2012.08.021

Google Scholar

[3] J. W. Rhim, P. K. W. Ng, Natural biopolymer-based nanocomposite films for packaging applications, Crit. Rev. Food Sci. Nutri. 47 (2007) 411.

Google Scholar

[4] P. C. Belibi, T. J. Daou, J.M. B. Ndjaka, et al., Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite, J. Food Eng. 115 (2013) 339.

DOI: 10.1016/j.jfoodeng.2012.10.027

Google Scholar

[5] F. A. Aouada, L. H. C. Mattoso, E. Longo, A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: Structural, mechanical, and thermal characterizations, J. Thermoplast Compos. Mater. 26 (2013) 109.

DOI: 10.1177/0892705711419697

Google Scholar

[6] J. A. Mbey, S. Hoppe, F. Thomas, Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties, Carbohydr. Polym. 88 (2012) 213.

DOI: 10.1016/j.carbpol.2011.11.091

Google Scholar

[7] S. K. Swain, A. K. Pradhan, H. S. Sahu, Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes, Carbohydr. Polym. 94 (2013) 663.

DOI: 10.1016/j.carbpol.2013.01.056

Google Scholar

[8] A. M. Nafchi, A. K. Alias, S. Mahmud, et al., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide, J. Food Eng. 113 (2012) 511.

DOI: 10.1016/j.jfoodeng.2012.07.017

Google Scholar

[9] P. R. Chang, R. Jian, J. Yu, et al., Starch-based composites reinforced with novel chitin nanoparticles, Carbohydr. Polym. 80 (2010) 420.

DOI: 10.1016/j.carbpol.2009.11.041

Google Scholar

[10] I. Neitzel, V. N. Mochalin, J. Niu, et al., Maximizing young's modulus of aminated nanodiamond-epoxy composites measured in compression, Polymer 53 (2012) 5965.

DOI: 10.1016/j.polymer.2012.10.037

Google Scholar

[11] H. -D. Wang, Q. Yang, C. H. Niu, Functionalization of nanodiamond particles with n, o-carboxymethyl chitosan, Diamond Relat. Mater. 19 (2010) 441.

DOI: 10.1016/j.diamond.2010.01.032

Google Scholar

[12] Q. Zhang, V. N. Mochalin, I. Neitzel, et al., Fluorescent plla-nanodiamond composites for bone tissue engineering, Biomaterials 32 (2011) 87.

DOI: 10.1016/j.biomaterials.2010.08.090

Google Scholar

[13] A. Y. Jee, M. Lee, Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds, J. Nanosci. Nanotechnol. 11 (2011) 533.

DOI: 10.1166/jnn.2011.3290

Google Scholar

[14] X. Zhang, W. Hu, J. Li, et al., A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond, Toxicol. Res. 1 (2012) 62.

DOI: 10.1039/c2tx20006f

Google Scholar

[15] H. Kim, H. Bin Man, B. Saha, et al., Multiscale simulation as a framework for the enhanced design of nanodiamond-polyethylenimine-based gene delivery, J. Phys. Chem. Lett. 3 (2012) 3791.

DOI: 10.1021/jz301756e

Google Scholar

[16] L. C. Cheng, H. M. Chen, T. C. Lai, et al., Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells, Nanoscale 5 (2013) 3931.

DOI: 10.1039/c3nr34091k

Google Scholar

[17] M. Parizek, T. E. L. Douglas, K. Novotna, et al., Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering, Int. J. Nanomed. 7 (2012) (1931).

DOI: 10.2147/ijn.s26665

Google Scholar

[18] G. I. Olivas, G. V. Barbosa-Canovas, Alginate-calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity, Lwt-Food Sci. Technol. 41 (2008) 359.

DOI: 10.1016/j.lwt.2007.02.015

Google Scholar

[19] H. C. Voon, R. Bhat, A. M. Easa, et al., Effect of addition of halloysite nanoclay and sio2 nanoparticles on barrier and mechanical properties of bovine gelatin films, Food Bioproce. Technol. 5 (2012) 1766.

DOI: 10.1007/s11947-010-0461-y

Google Scholar

[20] S. Mahmoudian, M. U. Wahit, A. F. Ismail, et al., Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids, Carbohydr. Polym. 88 (2012) 1251.

DOI: 10.1016/j.carbpol.2012.01.088

Google Scholar

[21] B. Duan, P. Sun, X. Wang, et al., Preparation and properties of starch nanocrystals/ carboxymethyl chitosan nanocomposite films, Starch-Starke 63 (2011) 528.

DOI: 10.1002/star.201000136

Google Scholar

[22] M. Abdollahi, M. Rezaei, G. Farzi, A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan, J. Food Eng. 111 (2012) 3.

DOI: 10.1016/j.jfoodeng.2012.02.012

Google Scholar