Computational Simulation of Mechanical Microenvironment of Early Stage of Bone Healing under Locking Compression Plate with Dynamic Locking Screws

Article Preview

Abstract:

It is well known that bone healing outcomes highly depend on the mechanical microenvironment of the fracture site, and a certain degree of interfragmentary movement (IFM) is essential for indirect (i.e. natural) bone healing. The application of locking compression plate (LCP) internal fixation in the treatment of bone fracture is a common practice which leads to early mobility and full function of the fractured extremity. However should the fixation configuration be too stiff, it might result in delayed healing or asymmetric tissue development across the fracture site due to the fact that IFM in near cortex area is too small to promote healing. Dynamic locking screw (DLS) has been recently designed to tackle this problem by reducing the stiffness of LCP fixation. However, the actual mechano-regulation mechanisms in which DLS uses to regulate the healing process are still not fully understood. The objective of this paper is to develop a computational model to understand the change of mechanical microenvironment of fracture site under LCP with dynamic locking screw in comparison to standard locking screw, and how this change could potentially regulate tissue development within the fracture callus during the healing process.Keywords: bone healing, locking compression plate, dynamic locking screw, finite element modelling

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-286

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bottlang, J. Doornink, T. J. Lujan, D. C. Fitzpatrick, J. L. Marsh, P. Augat, et al., Effects of construct stiffness on healing of fractures stabilized with locking plates., The Journal of bone and joint surgery. American volume, vol. 92 Suppl 2, pp.12-22, (2010).

DOI: 10.2106/jbjs.j.00780

Google Scholar

[2] L. Claes, Biomechanical principles and mechanobiologic aspects of flexible and locked plating., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S4-7, (2011).

DOI: 10.1097/bot.0b013e318207093e

Google Scholar

[3] L. Claes, M. Reusch, M. Göckelmann, M. Ohnmacht, T. Wehner, M. Amling, et al., Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing, Journal of Orthopaedic Research, vol. 29, pp.425-432, (2011).

DOI: 10.1002/jor.21227

Google Scholar

[4] T. J. Lujan, C. E. Henderson, S. M. Madey, D. C. Fitzpatrick, J. L. Marsh, and M. Bottlang, Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation., Journal of orthopaedic trauma, vol. 24, pp.156-62, (2010).

DOI: 10.1097/bot.0b013e3181be6720

Google Scholar

[5] H. -C. Pape and M. Bottlang, Flexible fixation with locking plates., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S1-3, (2011).

DOI: 10.1097/bot.0b013e3182079ef4

Google Scholar

[6] S. M. Perren, Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology., The Journal of Bone and Joint Surgery, pp.1093-1110, (2002).

DOI: 10.1302/0301-620x.84b8.0841093

Google Scholar

[7] C. E. Henderson, M. Bottlang, J. L. Marsh, D. C. Fitzpatrick, and S. M. Madey, Does locked plating of periprosthetic supracondylar femur fractures promote bone healing by callus formation? Two cases with opposite outcomes., The Iowa orthopaedic journal, vol. 28, pp.73-6, (2008).

DOI: 10.1097/bot.0b013e3181be6720

Google Scholar

[8] M. Bottlang, M. Lesser, J. Koerber, J. Doornink, B. von Rechenberg, P. Augat, et al., Far cortical locking can improve healing of fractures stabilized with locking plates., The Journal of bone and joint surgery. American volume, vol. 92, pp.1652-60, (2010).

DOI: 10.2106/jbjs.i.01111

Google Scholar

[9] R. Zdero and H. Bougherara, x Orthopaedic Biomechanics : A Practical Approach to Combining Mechanical Testing and Finite Element Analysis, pp.171-194, (2010).

DOI: 10.5772/10077

Google Scholar

[10] S. -H. Kim, S. -H. Chang, and H. -J. Jung, The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues, Composite Structures, vol. 92, pp.2109-2118, (2010).

DOI: 10.1016/j.compstruct.2009.09.051

Google Scholar

[11] K. JH and C. SH, Design of a flexible composite bone plate for bone fracture healing, in 14th international conference on composite structures, ed. Melbourne, Australia, (2007).

Google Scholar

[12] A. Rabiei, Recent developments and the future of bone mimicking: materials for use in biomedical implants., Expert review of medical devices, vol. 7, pp.727-9, (2010).

DOI: 10.1586/erd.10.51

Google Scholar

[13] A. Rabiei, Composite metal foam and methods of preparation thereof, (2012).

Google Scholar

[14] D. L. Miller and T. Goswami, A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing., Clinical biomechanics (Bristol, Avon), vol. 22, pp.1049-62, (2007).

DOI: 10.1016/j.clinbiomech.2007.08.004

Google Scholar

[15] D. J. Hak, S. Toker, C. Yi, and J. Toreson, The influence of fracture fixation biomechanics on fracture healing., Orthopedics, vol. 33, pp.752-5, (2010).

DOI: 10.3928/01477447-20100826-20

Google Scholar

[16] M. Ahmad, R. Nanda, a. S. Bajwa, J. Candal-Couto, S. Green, and a. C. Hui, Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?, Injury, vol. 38, pp.358-64, (2007).

DOI: 10.1016/j.injury.2006.08.058

Google Scholar

[17] K. Stoffel, U. Dieter, G. Stachowiak, A. Gächter, and M. S. Kuster, Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled?, Injury, vol. 34, pp.11-19, (2003).

DOI: 10.1016/j.injury.2003.09.021

Google Scholar

[18] R. M. Sellei, R. L. Garrison, P. Kobbe, P. Lichte, M. Knobe, and H. -C. Pape, Effects of near cortical slotted holes in locking plate constructs., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S35-40, (2011).

DOI: 10.1097/bot.0b013e3182070f2d

Google Scholar

[19] M. J. Gardner, S. E. Nork, P. Huber, and J. C. Krieg, Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots., Injury, vol. 41, pp.652-6, (2010).

DOI: 10.1016/j.injury.2010.02.022

Google Scholar

[20] M. J. Gardner, S. E. Nork, P. Huber, and J. C. Krieg, Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study., Journal of orthopaedic trauma, vol. 23, pp.281-7, (2009).

DOI: 10.1097/bot.0b013e31819df775

Google Scholar

[21] S. Döbele, C. Horn, S. Eichhorn, A. Buchholtz, A. Lenich, R. Burgkart, et al., The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness., " Langenbeck, s archives of surgery / Deutsche Gesellschaft für Chirurgie, vol. 395, pp.421-8, (2010).

DOI: 10.1007/s00423-010-0636-z

Google Scholar

[22] M. Plecko, N. Lagerpusch, D. Andermatt, R. Frigg, R. Koch, M. Sidler, et al., The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)-An experimental study in sheep., Injury, (2012).

DOI: 10.1016/j.injury.2012.10.022

Google Scholar

[23] M. Bottlang and F. Feist, Biomechanics of far cortical locking., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S21-8, (2011).

DOI: 10.1097/bot.0b013e318207885b

Google Scholar

[24] J. Doornink, D. C. Fitzpatrick, S. M. Madey, and M. Bottlang, Far cortical locking enables flexible fixation with periarticular locking plates., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S29-34, (2011).

DOI: 10.1097/bot.0b013e3182070cda

Google Scholar

[25] M. Bottlang, J. Doornink, D. C. Fitzpatrick, and S. M. Madey, Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength., The Journal of bone and joint surgery. American volume, vol. 91, pp.1985-94, (2009).

DOI: 10.2106/jbjs.h.01038

Google Scholar

[26] Z. Thompson, T. Miclau, D. Hu, and J. a. Helms, A model for intramembranous ossification during fracture healing., Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 20, pp.1091-8, (2002).

DOI: 10.1016/s0736-0266(02)00017-7

Google Scholar

[27] P. Klein, The initial phase of fracture healing is specifically sensitive to mechanical conditions, Journal of Orthopaedic Research, vol. 21, p.662, (2003).

Google Scholar

[28] D. R. Epari, W. R. Taylor, M. O. Heller, and G. N. Duda, Mechanical conditions in the initial phase of bone healing., Clinical biomechanics (Bristol, Avon), vol. 21, pp.646-55, (2006).

DOI: 10.1016/j.clinbiomech.2006.01.003

Google Scholar

[29] M. A. Soltz and G. A. Ateshian, A Conewise Linear Elasticity Nonlinearity in Articular Cartilage, Bioengineering, vol. 122, (2000).

DOI: 10.1115/1.1324669

Google Scholar

[30] L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, Integrated model of IGF-I mediated biosynthesis in deforming articular cartilage, Journal of Engineering Mechanics, vol. 135, pp.439-449, (2009).

DOI: 10.1061/(asce)0733-9399(2009)135:5(439)

Google Scholar

[31] L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, A fully coupled poroelastic reactive-transport model of cartilage, Molecular & Cellular Biomechanics, vol. 5, pp.133-153, (2008).

Google Scholar

[32] L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, IGF uptake with competitive binding in articular cartilage, Journal of Biological Systems, vol. 16, pp.175-195, (2008).

DOI: 10.1142/s0218339008002575

Google Scholar

[33] COMSOL Multiphysics, 4. 3 ed: COMSOL Inc, (2012).

Google Scholar

[34] W. Mccartney, B. Donald, and M. Hashmi, Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading, Journal of Materials Processing Technology, vol. 169, pp.476-484, (2005).

DOI: 10.1016/j.jmatprotec.2005.04.104

Google Scholar

[35] D. Lacroix and P. J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading., in Journal of biomechanics vol. 35, ed, 2002, pp.1163-71.

DOI: 10.1016/s0021-9290(02)00086-6

Google Scholar

[36] S. M. Perren, Physical and biological aspects of fracture healing with special reference to internal fixation., Clinical orthopaedics and related research, pp.175-96, (1979).

Google Scholar

[37] P. J. Prendergast, R. Huiskes, and K. Soballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces, vol. 30, (1997).

DOI: 10.1016/s0021-9290(96)00140-6

Google Scholar

[38] L. E. Claes, C. a. Heigele, C. Neidlinger-Wilke, D. Kaspar, W. Seidl, K. J. Margevicius, et al., Effects of mechanical factors on the fracture healing process., Clinical orthopaedics and related research, pp. S132-47, (1998).

DOI: 10.1097/00003086-199810001-00015

Google Scholar

[39] D. R. Carter, G. S. Beaupré, N. J. Giori, and J. a. Helms, Mechanobiology of skeletal regeneration., Clinical orthopaedics and related research, pp. S41-55, (1998).

DOI: 10.1097/00003086-199810001-00006

Google Scholar

[40] R. Huiskes, W. D. Van Driel, P. J. Prendergast, and K. Søballe, A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation., Journal of materials science. Materials in medicine, vol. 8, pp.785-8, (1997).

DOI: 10.1023/a:1018520914512

Google Scholar