[1]
M. Bottlang, J. Doornink, T. J. Lujan, D. C. Fitzpatrick, J. L. Marsh, P. Augat, et al., Effects of construct stiffness on healing of fractures stabilized with locking plates., The Journal of bone and joint surgery. American volume, vol. 92 Suppl 2, pp.12-22, (2010).
DOI: 10.2106/jbjs.j.00780
Google Scholar
[2]
L. Claes, Biomechanical principles and mechanobiologic aspects of flexible and locked plating., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S4-7, (2011).
DOI: 10.1097/bot.0b013e318207093e
Google Scholar
[3]
L. Claes, M. Reusch, M. Göckelmann, M. Ohnmacht, T. Wehner, M. Amling, et al., Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing, Journal of Orthopaedic Research, vol. 29, pp.425-432, (2011).
DOI: 10.1002/jor.21227
Google Scholar
[4]
T. J. Lujan, C. E. Henderson, S. M. Madey, D. C. Fitzpatrick, J. L. Marsh, and M. Bottlang, Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation., Journal of orthopaedic trauma, vol. 24, pp.156-62, (2010).
DOI: 10.1097/bot.0b013e3181be6720
Google Scholar
[5]
H. -C. Pape and M. Bottlang, Flexible fixation with locking plates., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S1-3, (2011).
DOI: 10.1097/bot.0b013e3182079ef4
Google Scholar
[6]
S. M. Perren, Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology., The Journal of Bone and Joint Surgery, pp.1093-1110, (2002).
DOI: 10.1302/0301-620x.84b8.0841093
Google Scholar
[7]
C. E. Henderson, M. Bottlang, J. L. Marsh, D. C. Fitzpatrick, and S. M. Madey, Does locked plating of periprosthetic supracondylar femur fractures promote bone healing by callus formation? Two cases with opposite outcomes., The Iowa orthopaedic journal, vol. 28, pp.73-6, (2008).
DOI: 10.1097/bot.0b013e3181be6720
Google Scholar
[8]
M. Bottlang, M. Lesser, J. Koerber, J. Doornink, B. von Rechenberg, P. Augat, et al., Far cortical locking can improve healing of fractures stabilized with locking plates., The Journal of bone and joint surgery. American volume, vol. 92, pp.1652-60, (2010).
DOI: 10.2106/jbjs.i.01111
Google Scholar
[9]
R. Zdero and H. Bougherara, x Orthopaedic Biomechanics : A Practical Approach to Combining Mechanical Testing and Finite Element Analysis, pp.171-194, (2010).
DOI: 10.5772/10077
Google Scholar
[10]
S. -H. Kim, S. -H. Chang, and H. -J. Jung, The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues, Composite Structures, vol. 92, pp.2109-2118, (2010).
DOI: 10.1016/j.compstruct.2009.09.051
Google Scholar
[11]
K. JH and C. SH, Design of a flexible composite bone plate for bone fracture healing, in 14th international conference on composite structures, ed. Melbourne, Australia, (2007).
Google Scholar
[12]
A. Rabiei, Recent developments and the future of bone mimicking: materials for use in biomedical implants., Expert review of medical devices, vol. 7, pp.727-9, (2010).
DOI: 10.1586/erd.10.51
Google Scholar
[13]
A. Rabiei, Composite metal foam and methods of preparation thereof, (2012).
Google Scholar
[14]
D. L. Miller and T. Goswami, A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing., Clinical biomechanics (Bristol, Avon), vol. 22, pp.1049-62, (2007).
DOI: 10.1016/j.clinbiomech.2007.08.004
Google Scholar
[15]
D. J. Hak, S. Toker, C. Yi, and J. Toreson, The influence of fracture fixation biomechanics on fracture healing., Orthopedics, vol. 33, pp.752-5, (2010).
DOI: 10.3928/01477447-20100826-20
Google Scholar
[16]
M. Ahmad, R. Nanda, a. S. Bajwa, J. Candal-Couto, S. Green, and a. C. Hui, Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?, Injury, vol. 38, pp.358-64, (2007).
DOI: 10.1016/j.injury.2006.08.058
Google Scholar
[17]
K. Stoffel, U. Dieter, G. Stachowiak, A. Gächter, and M. S. Kuster, Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled?, Injury, vol. 34, pp.11-19, (2003).
DOI: 10.1016/j.injury.2003.09.021
Google Scholar
[18]
R. M. Sellei, R. L. Garrison, P. Kobbe, P. Lichte, M. Knobe, and H. -C. Pape, Effects of near cortical slotted holes in locking plate constructs., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S35-40, (2011).
DOI: 10.1097/bot.0b013e3182070f2d
Google Scholar
[19]
M. J. Gardner, S. E. Nork, P. Huber, and J. C. Krieg, Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots., Injury, vol. 41, pp.652-6, (2010).
DOI: 10.1016/j.injury.2010.02.022
Google Scholar
[20]
M. J. Gardner, S. E. Nork, P. Huber, and J. C. Krieg, Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study., Journal of orthopaedic trauma, vol. 23, pp.281-7, (2009).
DOI: 10.1097/bot.0b013e31819df775
Google Scholar
[21]
S. Döbele, C. Horn, S. Eichhorn, A. Buchholtz, A. Lenich, R. Burgkart, et al., The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness., " Langenbeck, s archives of surgery / Deutsche Gesellschaft für Chirurgie, vol. 395, pp.421-8, (2010).
DOI: 10.1007/s00423-010-0636-z
Google Scholar
[22]
M. Plecko, N. Lagerpusch, D. Andermatt, R. Frigg, R. Koch, M. Sidler, et al., The dynamisation of locking plate osteosynthesis by means of dynamic locking screws (DLS)-An experimental study in sheep., Injury, (2012).
DOI: 10.1016/j.injury.2012.10.022
Google Scholar
[23]
M. Bottlang and F. Feist, Biomechanics of far cortical locking., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S21-8, (2011).
DOI: 10.1097/bot.0b013e318207885b
Google Scholar
[24]
J. Doornink, D. C. Fitzpatrick, S. M. Madey, and M. Bottlang, Far cortical locking enables flexible fixation with periarticular locking plates., Journal of orthopaedic trauma, vol. 25 Suppl 1, pp. S29-34, (2011).
DOI: 10.1097/bot.0b013e3182070cda
Google Scholar
[25]
M. Bottlang, J. Doornink, D. C. Fitzpatrick, and S. M. Madey, Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength., The Journal of bone and joint surgery. American volume, vol. 91, pp.1985-94, (2009).
DOI: 10.2106/jbjs.h.01038
Google Scholar
[26]
Z. Thompson, T. Miclau, D. Hu, and J. a. Helms, A model for intramembranous ossification during fracture healing., Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 20, pp.1091-8, (2002).
DOI: 10.1016/s0736-0266(02)00017-7
Google Scholar
[27]
P. Klein, The initial phase of fracture healing is specifically sensitive to mechanical conditions, Journal of Orthopaedic Research, vol. 21, p.662, (2003).
Google Scholar
[28]
D. R. Epari, W. R. Taylor, M. O. Heller, and G. N. Duda, Mechanical conditions in the initial phase of bone healing., Clinical biomechanics (Bristol, Avon), vol. 21, pp.646-55, (2006).
DOI: 10.1016/j.clinbiomech.2006.01.003
Google Scholar
[29]
M. A. Soltz and G. A. Ateshian, A Conewise Linear Elasticity Nonlinearity in Articular Cartilage, Bioengineering, vol. 122, (2000).
DOI: 10.1115/1.1324669
Google Scholar
[30]
L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, Integrated model of IGF-I mediated biosynthesis in deforming articular cartilage, Journal of Engineering Mechanics, vol. 135, pp.439-449, (2009).
DOI: 10.1061/(asce)0733-9399(2009)135:5(439)
Google Scholar
[31]
L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, A fully coupled poroelastic reactive-transport model of cartilage, Molecular & Cellular Biomechanics, vol. 5, pp.133-153, (2008).
Google Scholar
[32]
L. Zhang, B. S. Gardiner, D. W. Smith, P. Pivonka, and A. J. Grodzinsky, IGF uptake with competitive binding in articular cartilage, Journal of Biological Systems, vol. 16, pp.175-195, (2008).
DOI: 10.1142/s0218339008002575
Google Scholar
[33]
COMSOL Multiphysics, 4. 3 ed: COMSOL Inc, (2012).
Google Scholar
[34]
W. Mccartney, B. Donald, and M. Hashmi, Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading, Journal of Materials Processing Technology, vol. 169, pp.476-484, (2005).
DOI: 10.1016/j.jmatprotec.2005.04.104
Google Scholar
[35]
D. Lacroix and P. J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading., in Journal of biomechanics vol. 35, ed, 2002, pp.1163-71.
DOI: 10.1016/s0021-9290(02)00086-6
Google Scholar
[36]
S. M. Perren, Physical and biological aspects of fracture healing with special reference to internal fixation., Clinical orthopaedics and related research, pp.175-96, (1979).
Google Scholar
[37]
P. J. Prendergast, R. Huiskes, and K. Soballe, Biophysical stimuli on cells during tissue differentiation at implant interfaces, vol. 30, (1997).
DOI: 10.1016/s0021-9290(96)00140-6
Google Scholar
[38]
L. E. Claes, C. a. Heigele, C. Neidlinger-Wilke, D. Kaspar, W. Seidl, K. J. Margevicius, et al., Effects of mechanical factors on the fracture healing process., Clinical orthopaedics and related research, pp. S132-47, (1998).
DOI: 10.1097/00003086-199810001-00015
Google Scholar
[39]
D. R. Carter, G. S. Beaupré, N. J. Giori, and J. a. Helms, Mechanobiology of skeletal regeneration., Clinical orthopaedics and related research, pp. S41-55, (1998).
DOI: 10.1097/00003086-199810001-00006
Google Scholar
[40]
R. Huiskes, W. D. Van Driel, P. J. Prendergast, and K. Søballe, A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation., Journal of materials science. Materials in medicine, vol. 8, pp.785-8, (1997).
DOI: 10.1023/a:1018520914512
Google Scholar