[1]
Homyk A, Orsi A, Wibby S, et al. Finite Element Analysis Of The Knee: Development Of A Failure Locus For The Anterior Cruciate Ligament. New York: Amer Soc Mechanical Engineers; (2010).
DOI: 10.1115/sbc2010-19200
Google Scholar
[2]
Pena E, Calvo B, Martinez MA, Palanca D, Doblare M. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clinical Biomechanics 2005; 20(5): 498-507.
DOI: 10.1016/j.clinbiomech.2005.01.009
Google Scholar
[3]
Pena E, Calvo B, Martinez MA, Doblare M. Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Computers in Biology and Medicine 2007; 37(3): 376-87.
DOI: 10.1016/j.compbiomed.2006.04.004
Google Scholar
[4]
Donahue TLH, Hull ML, Rashid MM, Jacobs CR. A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering-Transactions of the Asme 2002; 124(3): 273-80.
DOI: 10.1115/1.1470171
Google Scholar
[5]
Papaioannou G, Demetropoulos CK, King YH. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. Knee 2010; 17(1): 61-68.
DOI: 10.1016/j.knee.2009.05.001
Google Scholar
[6]
Park HS, Ahn C, Fung DT, Ren YP, Zhang LQ. A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. Journal of Biomechanics 2010; 43(10): 2039-42.
DOI: 10.1016/j.jbiomech.2010.03.015
Google Scholar
[7]
Yang NH, Nayeb-Hashemi H, Canavan PK, Vaziri A. Effect of Frontal Plane Tibiofemoral Angle on the Stress and Strain at the Knee Cartilage during the Stance Phase of Gait. Journal of Orthopaedic Research 2010; 28(12): 1539-47.
DOI: 10.1002/jor.21174
Google Scholar
[8]
Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Journal of Orthopaedic Research 2003; 21(6): 1098-106.
DOI: 10.1016/s0736-0266(03)00113-x
Google Scholar
[9]
Besier TF, Gold GE, Beaupre GS, Delp SL. A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Medicine and Science in Sports and Exercise 2005; 37(11): 1924-30.
DOI: 10.1249/01.mss.0000176686.18683.64
Google Scholar
[10]
Li G, Gil J, Kanamori A, Woo SLY. A validated three-dimensional computational model of a human knee joint. Journal of Biomechanical Engineering-Transactions of the Asme 1999; 121(6): 657-62.
DOI: 10.1115/1.2800871
Google Scholar
[11]
Yang NH, Canavan PK, Nayeb-Hashemi H, Najafi B, Vaziri A. Protocol for constructing subject-specific biomechanical models of knee joint. Computer Methods in Biomechanics and Biomedical Engineering 2010; 13(5): 589-603.
DOI: 10.1080/10255840903389989
Google Scholar
[12]
Vohra S, Arnold G, Doshi S, Marcantonio D. Normal MR Imaging Anatomy of the Knee. Magnetic Resonance Imaging Clinics of North America 2011; 19(3): 637-53.
DOI: 10.1016/j.mric.2011.05.012
Google Scholar
[13]
Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanical Engineering-Transactions of the Asme 2001; 123(4): 341-46.
DOI: 10.1115/1.1385841
Google Scholar
[14]
Donzelli PS, Spilker RL, Ateshian GA, Mow VC. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. Journal of Biomechanics 1999; 32(10): 1037-47.
DOI: 10.1016/s0021-9290(99)00106-2
Google Scholar
[15]
Chia HN, Hull ML. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. Journal of Orthopaedic Research 2008; 26(7): 951-56.
DOI: 10.1002/jor.20573
Google Scholar