Numerical Simulation of Biomechanical Behaviours in Novel Dental Restorations

Article Preview

Abstract:

Besides the prevention strategies against early stage dental caries, restoration is a preferable way to prevent decayed tooth from further deterioration. This study aimed to compare the mechanical strengths of carious tooth, traditionally restored tooth, and novel conservatively restored teeth under occlusal loading. The two-dimensional (2D) finite element method (FEM) was applied to quantify and compare maximum tensile stresses thereby predicting the initiation of crack. Taking into consideration of peak tensile stresses, it was found that the conservative (minimal intervention) restorations exhibited better fracture resistance than traditional restoration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-331

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fontana, D.A. Young, M.S. Wolff, N.B. Pitts, C. Longbottom, Defining dental caries for 2010 and beyond. Dent. Clin. North Am. 54(3) (2010) 423-440.

DOI: 10.1016/j.cden.2010.03.007

Google Scholar

[2] G.J. Christensen, What has happened to conservative tooth restorations? J. Am. Dent. Assoc. 136(10) (2005) 1435-1437.

DOI: 10.14219/jada.archive.2005.0058

Google Scholar

[3] T. Miyamoto, S.M. Morgano, T. Kumagai, J.A. Jones, M.E. Nunn, Treatment history of teeth in relation to the longevity of the teeth and their restorations: outcomes of teeth treated and maintained for 15 years. J. Prosthet. Dent. 97(3) (2007).

DOI: 10.1016/j.prosdent.2007.01.007

Google Scholar

[4] V. Adams, A. Askenazi, Building better products with finite element analysis, 1st ed., OnWord Press, United State, (1999).

Google Scholar

[5] I. Ichim, Q. Li, W. Li, J. Kieser, M. Swain, Modelling of fracture behaviour in biomaterials, a leading opionion article. Biomaterials 28 (2007) 1317-1326.

DOI: 10.1016/j.biomaterials.2006.10.035

Google Scholar

[6] C. Rungsiyakull, Q. Li, G. Sun, W. Li, M.V. Swain, Surface morphology optimization for osseointegration of coated implants. Biomaterials 31(27) (2010) 7196-7204.

DOI: 10.1016/j.biomaterials.2010.05.077

Google Scholar

[7] Z. Zhang, S.W. Zhou, Q. Li, W. Li, M.V. Swain, Sensitivity analysis of bi-layered ceramic dental restorations. Dent. Mater. 28(2) (2012) e6-e14.

DOI: 10.1016/j.dental.2011.11.012

Google Scholar

[8] F.F. Demarco, M.B. Corrêa, M.S. Cenci, R.R. Moraes, N.J. Opdam. Longevity of posterior composite restorations: not only a matter of materials. Dent. Mater. 28(1) (2012) 87-101.

DOI: 10.1016/j.dental.2011.09.003

Google Scholar

[9] M.W. Heft, G.H. Gilbert, T.A. Dolan, U. Foerster, Restoration fractures, cusp fractures and root fragments in a diverse sample of adults: 24-month incidence. J. Am. Dent. Assoc. 131(10) (2000) 1459-1464.

DOI: 10.14219/jada.archive.2000.0057

Google Scholar

[10] W. Li, M.V. Swain, Q. Li, G.P. Steven, Fibre reinforced composite dental bridge, part I experimental investigation. Biomaterials 25 (2004) 4987-4993.

DOI: 10.1016/j.biomaterials.2004.01.010

Google Scholar

[11] W. Li, M.V. Swain, Q. Li, G.P. Steven, Fibre reinforced composite dental bridge, part II numerical investigation. Biomaterials 25 (2004) 4995-5001.

DOI: 10.1016/j.biomaterials.2004.01.011

Google Scholar

[12] V. Cavalli, M. Giannini, R.M. Carvalho, Effect of carbamide peroxide bleaching agents on tensile strength of human enamel. Dent. Mater. 20 (2004) 733-739.

DOI: 10.1016/j.dental.2003.10.007

Google Scholar

[13] V. Fuentes, L. Ceballos, R. Osorio, M. Toledano, R.M. Carvalho, D.H. Pashley, Tensile strength and microhardness of treated human dentin. Dent. Mater. 20 (2004) 522-529.

DOI: 10.1016/j.dental.2003.05.005

Google Scholar

[14] M.C. Peters, E. Bresciani, T.J. Barat, T.C. Fagundes, R.L. Navarro, M.F. Navarro, S.H. Dickens, In vivo dentin remineralization by calcium-phosphate cement. J. Dent. Res. 89(3) (2010) 286-291.

DOI: 10.1177/0022034509360155

Google Scholar

[15] W. Li, C. Rungsiyakull, Z. Zhang, S.W. Zhou, M.V. Swain, I. Ichim, Q. Li, Computational fracture modelling in bioceramic structures. Acta Biomater. 7 (2011) 2285-2292.

DOI: 10.4028/www.scientific.net/amr.268-270.853

Google Scholar

[16] M.C. Thompson, Z. Zhang, C.J. Field, Q. Li, M.V. Swain, The all-ceramic, inlay supported fixed partial denture. Part 5. Extended finite element analysis validation. Aust. Dent. J. 58 (2013) 434-441.

DOI: 10.1111/adj.12107

Google Scholar

[17] Z. Zhang, M. Guazzato, T. Sornsuwan, S.S. Scherrer, C. Rungsiyakull, W. Li, M.V. Swain, Q. Li, Thermally induced fracture for core-veneered dental ceramic structures. Acta Biomater. 9 (2013) 8394-8402.

DOI: 10.1016/j.actbio.2013.05.009

Google Scholar

[18] I. Ichim, P.R. Schmidlin, Q. Li, M.V. Swain, J. Kieser. Restoration of non-carious cervical lesions: part II-restorative material selection to minimise fracture. Dent. Mater. 23(12) (2007) 1553-1561.

DOI: 10.1016/j.dental.2007.02.002

Google Scholar

[19] I. Ichim, Q. L, J.G. Loughran, J. Kieser, M.V. Swain. Restoration of non-carious cervical lesions: part I- modelling of restorative fracture. Dent. Mater. 23(12) (2007) 1562-1569.

DOI: 10.1016/j.dental.2007.02.003

Google Scholar