Impaction Loads Resulting in Intraoperative Periprosthetic Femoral Fracture: A Finite Element Study

Article Preview

Abstract:

Intraoperative periprosthetic femoral fractures (IPPFF) occur in approximately 3-5% of all cementless total hip arthroplasty (THA) surgeries. This study aimed to identify the critical impaction load to cause an IPPFF during implant implementation. This critical load may be used as a guideline for surgeons as well as a parameter for the design of future surgical tools and procedures. This study concerned a single femur of a healthy 60 year old female with an anatomical femoral stem implant, thus the effects of patient specific variables (such as osteoporosis, amount of bone resorption, bone damage, implant geometry, age and gender) were not considered. The eXtended Finite Element Method (XFEM) was used to analyse the fracture. From CT scan data, a user-defined subroutine is used to assign heterogeneous isotropic material properties to the femur. It was computed that IPPFF would take place at an impaction load of 18.5 kN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-304

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. L. G. De Geest T, Vansintjan P, Direct anterior total hip arthroplasty: complications and early outcome in a series of 300 cases., Acta Orthop Belg, vol. 79, no. 2, p.166–73, (2013).

Google Scholar

[2] W. N. Capello, J. a D'Antonio, and M. Naughton, Periprosthetic Fractures Around a Cementless Hydroxyapatite-coated Implant: A New Fracture Pattern Is Described., Clinical orthopaedics and related research, Jul. (2013).

DOI: 10.1007/s11999-013-3137-x

Google Scholar

[3] K. R. Berend, A. V. Lombardi, T. H. Mallory, D. J. Chonko, K. L. Dodds, and J. B. Adams, Cerclage wires or cables for the management of intraoperative fracture associated with a cementless, tapered femoral prosthesis, The Journal of Arthroplasty, vol. 19, no. 7, p.17–21, Oct. (2004).

DOI: 10.1016/j.arth.2004.06.008

Google Scholar

[4] J. T. Schwartz, J. G. Mayer, and C. A. Enhg, Femoral Fracture Non-Cemented Hip Arthroplasty, Journal of Bone and Joint Surgery, vol. 71, no. 8, p.1135–42, (1989).

DOI: 10.2106/00004623-198971080-00003

Google Scholar

[5] R. H. Fitzgerald, G. W. Brindley, and B. F. Kavanagh, The uncemented total hip arthroplasty. Intraoperative femoral fractures., Clinical orthopaedics and related research, no. 235, p.61–6, Oct. (1988).

DOI: 10.1097/00003086-198810000-00007

Google Scholar

[6] Australian Orthopaedic Association, Lay Summary 2012 Annual Report Hip and Knee Replacement, (2012).

Google Scholar

[7] S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030, J Bone Joint Surg Am, vol. 89, no. 4, p.780–85, (2007).

DOI: 10.2106/jbjs.f.00222

Google Scholar

[8] J. Aldridge, S. Dunitz, N. Johanson, A. Lewis, G. Miller, and Y. Mittal, Stability in Press-Fit Femoral Hip Prostheses, (2011).

Google Scholar

[9] R. A. Jasan Dannaway, Danè Dabirrahmani, David Sonnabend, Andrew Martin, David Little, An investigation into the frictional properties between bone and various orthopaedic implant coatings: Implant Stability., p.1–28, (2013).

DOI: 10.1142/s0218957715500153

Google Scholar

[10] N. G. D. Murray, V. R. Jablokov, and H. L. Freese, Mechanical and Physical Properties of Titanium- 12Molybdenum-6Zirconium-2Iron Beta Titanium Alloy, Journal of ASTM International, vol. 2, no. 8, p.1–13, (2005).

DOI: 10.1520/jai12774

Google Scholar

[11] L. Gracia, E. Ibarz, S. Puértolas, J. Cegoñino, F. López-Prats, J. J. Panisello, and A. Herrera, Study of bone remodeling of two models of femoral cementless stems by means of DEXA and finite elements., Biomedical engineering online, vol. 9, p.22, Jan. (2010).

DOI: 10.1186/1475-925x-9-22

Google Scholar

[12] A. Shirazi-Adl, M. Dammak, and G. Paiement, Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants., Journal of biomedical materials research, vol. 27, no. 2, p.167–75, Feb. (1993).

DOI: 10.1002/jbm.820270205

Google Scholar

[13] E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, Trabecular bone modulus–density relationships depend on anatomic site, Journal of Biomechanics, vol. 36, no. 7, p.897–904, Jul. (2003).

DOI: 10.1016/s0021-9290(03)00071-x

Google Scholar

[14] E. Schileo, E. Dall'ara, F. Taddei, A. Malandrino, T. Schotkamp, M. Baleani, and M. Viceconti, An accurate estimation of bone density improves the accuracy of subject-specific finite element models., Journal of biomechanics, vol. 41, no. 11, p.2483–91, Aug. (2008).

DOI: 10.1016/j.jbiomech.2008.05.017

Google Scholar

[15] H. H. Bayraktar, E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny, Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue, Journal of Biomechanics, vol. 37, no. 1, p.27–35, Jan. (2004).

DOI: 10.1016/s0021-9290(03)00257-4

Google Scholar

[16] J. Y. Rho, R. B. Ashman, and C. H. Turner, Young's modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements, Journal of Biomechanics, vol. 26, no. 2, p.111–119, Feb. (1993).

DOI: 10.1016/0021-9290(93)90042-d

Google Scholar

[17] Z. Zhang, M. Guazzato, T. Sornsuwan, S. S. Scherrer, C. Rungsiyakull, W. Li, M. V Swain, and Q. Li, Thermally induced fracture for core-veneered dental ceramic structures., Acta biomaterialia, vol. 9, no. 9, p.8394–402, Sep. (2013).

DOI: 10.1016/j.actbio.2013.05.009

Google Scholar

[18] L. Kohan, R. Appleyard, M. Hogg, S. Donohoo, and R. Gillies, Impaction Loads During the Insertion Of Hip Resurfacing Components, in 53rd Annual Meeting of the Orthopaedic Research Society, 2005, vol. 36, no. 2, p. Poster No 1701.

Google Scholar

[19] L. Peng, J. Bai, X. Zeng, and Y. Zhou, Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions., Medical engineering & physics, vol. 28, no. 3, p.227–33, Apr. (2006).

DOI: 10.1016/j.medengphy.2005.06.003

Google Scholar

[20] V. Baca, Z. Horak, P. Mikulenka, and V. Dzupa, Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses., Medical engineering & physics, vol. 30, no. 7, p.924–30, Sep. (2008).

DOI: 10.1016/j.medengphy.2007.12.009

Google Scholar

[21] M. E. Berend, A. Smith, J. B. Meding, M. a Ritter, T. Lynch, and K. Davis, Long-term outcome and risk factors of proximal femoral fracture in uncemented and cemented total hip arthroplasty in 2551 hips., The Journal of arthroplasty, vol. 21, no. 6 Suppl 2, p.53–9, Sep. (2006).

DOI: 10.1016/j.arth.2006.05.014

Google Scholar

[22] R. E. Mayle and C. J. Della Valle, Intra-operative fractures during THA: see it before it sees us., The Journal of bone and joint surgery. British volume, vol. 94, no. 11 Suppl A, p.26–31, Nov. (2012).

DOI: 10.1302/0301-620x.94b11.30614

Google Scholar

[23] K. J. Egan and P. E. Di Cesare, Intraoperative complications of revision hip arthroplasty using a fully porous-coated straight cobalt-chrome femoral stem., The Journal of arthroplasty, vol. 10 Suppl, pp. S45–51, Nov. (1995).

DOI: 10.1016/s0883-5403(05)80230-x

Google Scholar