Topology Optimization of Photonic Band Gap Crystals

Article Preview

Abstract:

This paper proposes a new topology optimization algorithm based on the bi-directional evolutionary structural optimization (BESO) method for the design of photonic band gap crystals. The photonic crystals are assumed to be periodically composed of two given dielectric materials. Based on the finite element analysis, the proposed BESO algorithm gradually re-distributes dielectric materials within the unit cell until the resulting photonic crystals possess a maximal band gap at the desirable frequency level. Numerical examples for both transverse magnetic (TM) and transverse electric (TE) polarizations are presented, and the optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

824-829

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Fleming, S. -Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, All-metallic three-dimensional photonic crystals with a large infrared bandgap, Nature 417, 52-55 (2002).

DOI: 10.1038/417052a

Google Scholar

[2] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

Google Scholar

[3] M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method , Comp. Meth. Appl. Mech. Eng. 71, 197-224 (1988).

DOI: 10.1016/0045-7825(88)90086-2

Google Scholar

[4] M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Opt. 1, 193-202 (1989).

Google Scholar

[5] M. Zhou and G. I. N. Rozvany, DCOC – an optimality criteria method for large systems, Part I: Theory. , Struct. Opt. 5, 12-25 (1992).

DOI: 10.1007/bf01744690

Google Scholar

[6] Y. M. Xie and G. P. Steven, Evolutionary Structural Optimization (Springer, London, 1997).

Google Scholar

[7] X. Huang and Y. M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (John Wiley & Sons, Chichester., 2010).

Google Scholar

[8] J. A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface method,. J. Comp. Phys. 163, 489-528 (2000).

DOI: 10.1006/jcph.2000.6581

Google Scholar

[9] M. Y. Wang, X. M. Wang, and D. M. Guo, A level set method for structural topology optimization, Comp. Meth. Appl. Mech. Eng. 192, 227-246 (2003).

Google Scholar

[10] O. Sigmund and K. Hougaard, Geometric properties of optimal photonic crystals, Phy. Rev. Lett. 100, 153904 (2008).

DOI: 10.1103/physrevlett.100.153904

Google Scholar

[11] H. Men, N. C. Nguyen, R. M. Freund, P. A. Parrilo, and J. Peraire, Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods, J. Comput. Physics 229, 3706-3725 (2010).

DOI: 10.1016/j.jcp.2010.01.023

Google Scholar

[12] C. Y. Kao, S. Osher, and E. Yablonovitch, Maximizing band gaps in two-dimensional photonic crystals by using level set methods, Appli. Physics B 81, 235–244 (2005).

DOI: 10.1007/s00340-005-1877-3

Google Scholar

[13] J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. ed. (John Wiley & Sons, Inc., 2002).

Google Scholar

[14] X. Huang, Z. H. Zuo, and Y. M. Xie, Evolutionary topology optimization of vibrating continuum structures for natural frequencies, Comp. & Struct. 88, 357-364 (2010).

DOI: 10.1016/j.compstruc.2009.11.011

Google Scholar

[15] X. Huang and Y. M. Xie, Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comp. Mech. 43, 393-401 (2009).

DOI: 10.1007/s00466-008-0312-0

Google Scholar