[1]
Verstraete, D., Sharifzadeh, S. & Hendrick, P., Definition and Aero-Elastic Optimisation of the Structure of the LAPCAT A2 Mach 6 Airliner,. Brisbane, Australia, (2012).
DOI: 10.2514/6.2012-5942
Google Scholar
[2]
Reaction Engines, LAPCAT A2, 2012. [Online]. Available: http: /www. reactionengines. co. uk/lapcat. html. [Accessed 14 June 2013].
Google Scholar
[3]
T. Tsuchiya and Y. Takenaka, Multidisciplinary Design Optimisation for Hypersonic Experimental Vehicle, AIAA Journal, vol. 45, no. 7, pp.1655-1662, (2007).
DOI: 10.2514/1.26668
Google Scholar
[4]
Japanese Aerospace Exploration Agency, JAXA Vision - JAXA 2025, Japanese Aerospace Exploration Agency, 2005. Accessible Online: http: /www. jaxa. jp/about/2025/pdf/jaxa_vision_e. pdf. [Accessed 18 June 2013].
DOI: 10.2514/6.iac-06-c3.1.04
Google Scholar
[5]
C. R. McClinton, X-43–Scramjet Power Breaks the Hypersonic Barrier, Reno, Nevada, (2006).
Google Scholar
[6]
R. Varvill and A. Bond, The Skylon Spaceplane: Progress to realisation, Journal British Interplanetary Society, vol. 61, pp.412-418, (2008).
Google Scholar
[7]
R. Barthelemy, Recent Progress in the National Aerospace Plane Program, IEEE AES Magazine, pp.3-12, May (1989).
Google Scholar
[8]
L. Cavagna and et. al., NEOCASs: An Open Sopurce Environment for the Aeroelastic Analysis at Conceptual Design Level, Brisbane, Australia, (2012).
Google Scholar
[9]
K. G. Bowcutt and S. J. Hatakeyama, Challenges, enabling technologies and technology maturity for responsive space, (2004).
Google Scholar
[10]
T. A. Heppenheimer, Facing the Heat Barrier: A history of hypersonics, 1st ed., Washington, DC: NASA History Division, (2007).
Google Scholar
[11]
H. McComb, Structures and Materials Technology for Hypersonic Aerospacecraft, NASA Technical Memorandum 102583, (1990).
Google Scholar
[12]
R. D. Quin and R. A. Fields, Comparison of Measured and Calculated temperatures for a Mach 8 Hypersonic Wing Test Structure, NASA Ames Research Center, Dryden Flight Research Facility, Edwards, California , (1986).
Google Scholar
[13]
C. R. McClinton, V. L. Rausch, L. T. Nguyen and J. R. Sitz, Preliminary X-43 flight test results, Acta Astronautica, vol. 1, no. 57, pp.266-276, (2005).
DOI: 10.1016/j.actaastro.2005.03.060
Google Scholar
[14]
R. M. Amundsen, C. P. Leonard and W. E. B. III, Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data, Pasedena, CA, USA, (2004).
Google Scholar
[15]
J. M. Robinson, An Overview of NASA's integrated Design and Engineering Analysis (IDEA) Environment, AIAA, (2011).
Google Scholar
[16]
D. K. Snapp and R. C. Pomeroy, A Geometry System For Aerodynamic Design, St. Louis Missouri, (1987).
Google Scholar
[17]
F. T. Johnson, et. al"TranAir: A Full-Potential, Solution Adaptive, Rectangular Grid Code for Predicting Subsonic, Transonic and Supersonic Flows about Arbitrary Configurations: User's Manual, " Boeing Military Airplane Company, Seattle, Washington, (1992).
Google Scholar
[18]
F. T. Johnson, E. N. Tinoco and N. J. Yu, Thirty Years of Development and Application of CFD at Boeing Commerical Airplanes, Seattle, Seattle.
DOI: 10.2514/6.2003-3439
Google Scholar
[19]
J. D. Anderson, Hypersonic and High-Temperature Gas Dynamics, 2nd ed., Reston, Virginia: American Institute of Aeronautics and Astronautics, (2006).
Google Scholar
[20]
Collier, C., Yarrington, P., Pickenheim, M., & Bednarcyk, B., An Approach to Preliminary Design and Analysis,. In 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference 23 - 26 April 2007, Honolulu, Hawaii. AIAA.
DOI: 10.2514/6.2007-2176
Google Scholar