[1]
G. Lu and T. Yu. Energy Absorption of Structures and Materials. Woodhead Publishing, Cambridge, UK, (2003).
Google Scholar
[2]
C.B.W. Pedersen. Topology optimization design of crushed 2d-frames for desired energy absorption history. Structural and Multidisciplinary Optimization, 25(5-6): 368–382, (2003).
DOI: 10.1007/s00158-003-0282-y
Google Scholar
[3]
M. Avalle, G. Chiandussi, and G. Belingardi. Design optimization by response surface methodology: application to crashworthiness design of vehicle structures. Structural and Multidisciplinary Optimization, 24(4): 325–332, (2002).
DOI: 10.1007/s00158-002-0243-x
Google Scholar
[4]
R. Lust. Structural optimization with crashworthiness constraints. Structural optimization, 4(2): 85–89, (1992).
DOI: 10.1007/bf01759921
Google Scholar
[5]
G.H. Yoon and Y.Y. Kim. Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. International Journal for Numerical Methods in Engineering, 69(10): 2196–2218, (2007).
DOI: 10.1002/nme.1843
Google Scholar
[6]
X Huang, Y M Xie, and G Lu. Topology optimization of energy-absorbing structures. International Journal of Crashworthiness, 12(6): 663-675, (2007).
DOI: 10.1080/13588260701497862
Google Scholar
[7]
G.I.N. Rozvany, M. Zhou, and T. Birker. Generalized shape optimization without homogenization. Structural optimization, 4(3-4): 250–252, (1992).
DOI: 10.1007/bf01742754
Google Scholar
[8]
X. Huang, Y.M. Xie, and M.C. Burry. A new algorithm for Bi-Directional Evolutionary Structural Optimization. JSME international journal. Series C, Mechanical systems, machine elements and manufacturing, 49(4): 1091-1099, Dec (2006).
DOI: 10.1299/jsmec.49.1091
Google Scholar
[9]
O.M. Querin. Evolutionary structural optimisation: Stress based formulation and implementation, (1997).
Google Scholar
[10]
G.I.N. Rozvany, O.M. Querin, Z. Gaspar, and V. Pomezanski. Extended optimality in topology design. Structural and Multidisciplinary Optimization, 24(3): 257–261, (2002).
DOI: 10.1007/s00158-005-0545-x
Google Scholar
[11]
Dassault Systèmes. Abaqus Analysis User's Manual, Version 6. 11, (2011).
Google Scholar
[12]
G.R. Johnson and W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proc. 7th International Symposium on Ballistics, pages 541–547, The Hague, The Netherlands, April (1983).
Google Scholar
[13]
G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1): 31-48, (1985).
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[14]
G. Kay, D. Goto, and R. Couch. Statistical testing and material model characterization of aluminum and titanium for transport airplane rotor burst fragment shielding. Technical Report DOT/FAA/AR-07/26, Lawrence Livermore National Laboratory, Livermore, California, August (2007).
Google Scholar