Buckling-Induced Retraction of Structured Spherical Shell under Pressure

Article Preview

Abstract:

This paper investigates the reversible retraction of a spherical perforated shell that is made from nonlinear soft material. The buckling and post-buckling simulation in Abaqus shows the skeleton ligaments of such a buckliball rotate in the beginning and buckle thereafter, resulting in the shrinkage and encapsulation of the whole structure in the final stage. We used dynamic-explicit method in the simulation and its superiority over others is verified by obtaining correct buckling patterns efficiently and stably.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

842-846

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Li, Y.P. Cao, X.Q. Feng, Growth and surface folding of esophageal mucosa: a biomechanical model, J Biomech 44 (2011) 182-188.

DOI: 10.1016/j.jbiomech.2010.09.007

Google Scholar

[2] Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure, Angew Chem Int Ed Engl 44 (2005) 5083-5087.

DOI: 10.1002/anie.200501500

Google Scholar

[3] Q. Wu, E. Schonbrun, W. Park, Tunable superlensing by a mechanically controlled photonic crystal, Journal of the Optical Society of America B-Optical Physics 23 (2006) 479-484.

DOI: 10.1364/josab.23.000479

Google Scholar

[4] S. Yim, M. Sitti, Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery, Ieee Transactions on Robotics 28 (2012) 1198-1202.

DOI: 10.1109/tro.2012.2197309

Google Scholar

[5] W.H. Suh, A.R. Jang, Y.H. Suh, K.S. Suslick, Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity, Advanced Materials 18 (2006) 1832-+.

DOI: 10.1002/adma.200600222

Google Scholar

[6] J. Shim, C. Perdigou, E.R. Chen, K. Bertoldi, P.M. Reis, Buckling-induced encapsulation of structured elastic shells under pressure, Proc Natl Acad Sci U S A 109 (2012) 5978-5983.

DOI: 10.1073/pnas.1115674109

Google Scholar

[7] F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science 282 (1998) 1111-1114.

DOI: 10.1126/science.282.5391.1111

Google Scholar

[8] B. Li, F. Jia, Y.P. Cao, X.Q. Feng, H. Gao, Surface wrinkling patterns on a core-shell soft sphere, Phys Rev Lett 106 (2011) 234301.

DOI: 10.1103/physrevlett.106.234301

Google Scholar

[9] H.F. Verheyen, The Complete Set of Jitterbug Transformers and the Analysis of Their Motion, Computers & Mathematics with Applications 17 (1989) 203-250.

DOI: 10.1016/0898-1221(89)90160-0

Google Scholar

[10] G. Kiper, E. Soylemez, Homothetic Jitterbug-like linkages, Mechanism and Machine Theory 51 (2012) 145-158.

DOI: 10.1016/j.mechmachtheory.2011.11.014

Google Scholar

[11] X. Huang, S.W. Zhou, Y.M. Xie, Q. Li, Topology optimization of microstructures of cellular materials and composites for macrostructures, Computational Materials Science 67 (2013) 397-407.

DOI: 10.1016/j.commatsci.2012.09.018

Google Scholar

[12] J. Li, J.M. Shim, J. Deng, J.T.B. Overvelde, X.L. Zhu, K. Bertoldi, S. Yang, Switching periodic membranes via pattern transformation and shape memory effect, Soft Matter 8 (2012) 10322-10328.

DOI: 10.1039/c2sm25816a

Google Scholar

[13] S. Sundar, B.K. Bhagavan, Generalized eigenvalue problems: Lanczos algorithm with a recursive partitioning method, Computers & Mathematics with Applications 39 (2000) 211-224.

DOI: 10.1016/s0898-1221(00)00077-8

Google Scholar

[14] B. Li, Y.P. Cao, X.Q. Feng, H.J. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: a review, Soft Matter 8 (2012) 5728-5745.

DOI: 10.1039/c2sm00011c

Google Scholar