Damage Evaluation by Impulsive Response in Structure Filled with Liquid

Article Preview

Abstract:

A double-walled liquid mercury target vessel, which consists of outer and inner walls, is being globally developed for MW-class spallation neutron sources. When proton beams bombard a mercury target, pressure waves are generated due to the rapid thermal heat deposition. These pressure waves trigger impulsive vibrations in the mercury vessel, and cause cavitation damage to the inner wall of the vessel. In this study, the dependency of the vibration behavior of the mercury vessel on the damage is systematically investigated through numerical simulations and experiments, for inner wall damage characterized by hole diameters of 1, 5, 10, 20, and 40 mm. A method referred to as wavelet differential analysis is developed, and a parameter referred to as average intensity is derived for a quantitative damage evaluation. Both the numerical simulation and experimental results show that the average intensity is damage-sensitive and depends on the damage feature size. The critical damage hole diameter is estimated to be 10 mm during damage evaluation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

629-636

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ikeda: Nucl. Instr. Meth. A, Vol. 600 (2009), p.1.

Google Scholar

[2] F. Maekawa, M. Harada, K. Oikawa, M. Teshigawara, T. Kai, S. Meigo, M. Ooi, S. Sakamoto, H. Takada, M. Futakawa, T. Kato, Y. Ikeda, N. Watanabe, T. Kamiyama, S. Torii, R. Kajimoto and M. Nakamura: Nucl. Instrum. Meth. A. Vol. 620 (2010), p.159.

DOI: 10.1016/j.nima.2010.04.020

Google Scholar

[3] M. Futakawa, H. Kogawa and R. Hino: J. Phys. IV France. Vol. 10 (2000), p.237.

Google Scholar

[4] M. Futakawa, K. Kikuchi, H. Conrad and H. Stechemesser: Nucl. Instrum. Methods. Vol. 439 (2000), p.1.

Google Scholar

[5] M. Futakawa, T. Naoe, C. C. Tsai, H. Kogawa, S. Ishikura, Y. Ikeda, H. Soyama and H. Date: J. Nucl. Mater. Vol. 343 (2005), p.70.

DOI: 10.1016/j.jnucmat.2004.07.063

Google Scholar

[6] M. Futakawa, T. Naoe, H. Kogawa, C. C. Tsai and Y. Ikeda: J. Nucl. Sci. Technol. Vol. 40 (2003), p.895.

Google Scholar

[7] M. Futakawa, H. Kogawa, R. Hino, H. Date, H. Takeishi: Int. J. Impact Eng. Vol. 28 (2003), p.123.

Google Scholar

[8] M. Futakawa, T. Wakui, H. Kogawa and Y. Ikeda: Nucl. Instrum. Methods A, Vol. 562 (2006), p.676.

Google Scholar

[9] M. Futakawa, H. Kogawa, S. Hasegawa, Y. Ikeda, B. Riemer, M. Wendel, J. Haines, G. Bauer, T. Naoe, K. Okita, A. Fujiwara, Y. Matsumoto and N. Tanaka: J. Nucl. Mater. Vol. 377 (2008), p.182.

DOI: 10.1016/j.jnucmat.2008.02.058

Google Scholar

[10] D.A. McClintock, B.W. Riemer, P.D. Ferguson, A.J. Carroll and M.J. Dayton: J. Nucl. Mater. Vol. 431 (2012), p.147.

Google Scholar

[11] J.O. Hallquist: LS-DYNA Theory Manual (Livermore Software Technology Corporation, USA 2006).

Google Scholar

[12] H. Kogawa, S. Ishikura, H. Sato, M. Harada, S. Takatama, M. Futakawa, K. Haga, R. Hino, S. Meigo, F. Maekawa and Y. Ikeda: J. Nucl. Mater. Vol. 343 (2005), p.178.

DOI: 10.1016/j.jnucmat.2004.08.032

Google Scholar

[13] J.R. Haines, B.W. Riemer, D.K. Felde, J.D. Hunn, S.J. Pawel and C.C. Tsai: J. Nucl. Mater. Vol. 343 (2005), p.58.

Google Scholar