Effects of Roughness Scattering in Carrier Transport of Near Ballistic Silicon NanoWire MOSFET

Article Preview

Abstract:

– In this paper, we have investigated the Scattering effects in Carrier Transport of Near-ballistic SiNW MOSFET, which incorporates elastic scattering, optical phonon emission and its combination with Roughness Scattering. Current–voltage (I–V) characteristics of Proposed model is compared with Natori’s Ballistic and Quasi-Ballistic Transport model. We study the impact of Surface Roughness in the device leads on the current variability of a Gate-All-Around (GAA) SiNW MOSFET, which shows a remarkable decrease in electric current, mobility variation and transconductance because of scattered mobility. Analog parameters like the transconductance (gm), the transconductance generation factor (gm/Id), the early voltage (VA) have also been investigated. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-208

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Natori, Compact modeling of Quasi-ballistic nanowire MOSFETs, IEEE Trans. Electron Devices, vol. 59, no. 1, p.79–86, Jan. (2012).

DOI: 10.1109/ted.2011.2172612

Google Scholar

[2] K. Natori, Compact modeling of ballistic nanowire MOSFETs, IEEE Trans. Electron Devices, vol. 55, no. 11, p.2877–2885, Nov. (2008).

DOI: 10.1109/ted.2008.2008009

Google Scholar

[3] Yann-Michel Niquet, Hector Mera, and Christophe Delerue, Impurity-limited mobility and variability in gate-all-around silicon nanowires, Applied Physics Letters 100, 153119 (2012).

DOI: 10.1063/1.4704174

Google Scholar

[4] S. D. Suk, S. -Y. Lee, S. -M. Kim, E. -J. Yoon, M. -S. Kim, M. Li, C.W. Oh, K. H. Yeo, S. H. Kim, D. -S. Shin, K. -H. Lee, H. S. Park, J. N. Han, C. J. Park, J. -B. Park, D. -W. Kim, D. Park, and B. -I. Ryu, Highperformance 5-nm radius twin silicon nanowire MOSFET (TSNWFET): Fabrication on Bulk Si wafer, characteristics, and reliability, in IEDM Tech. Dig., 2005, p.717.

DOI: 10.1109/iedm.2005.1609453

Google Scholar

[5] N. Seoane, A. Martinez, A. R. Brown, J.R. Barker, and A. Asenov, Variability in Si Nanowire MOSFETs due to combined effect of Interface Roughness and random dopants: A fully 3-D NEGF simulation study, IEEE Trans. Electron Devices, vol. 57, no. 7, p.1626–1634, Jul. (2010).

DOI: 10.1109/ted.2010.2048405

Google Scholar

[6] R. Barker, Theory of quantum transport in lateral nanostructures, in Physics and Fabrication of Nanostructures, M. Read and W. P. Kirk, Eds. New York: Academic, 1989, p.253–262.

Google Scholar

[7] J. R. Barker, M. Finch, J. Pepin, and M. Laughton, Theory of nonlinear transport in quantum waveguides, Solid State Electron., vol. 32, no. 12 p.1155–1159, Dec. (1989).

DOI: 10.1016/0038-1101(89)90206-2

Google Scholar

[8] R. Venugopal, Z. Ren, S. Datta, and M. Lundstrom, Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches, J. Appl. Phys., vol. 92, no. 7, p.3730–3739, Oct. (2002).

DOI: 10.1063/1.1503165

Google Scholar

[9] A. Martinez, N. Seoane, A. Brown, and A. Asenov, A comparison between a fully 3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET, in Proc SISPAD, San Jose, CA, 2009, p.194–197.

DOI: 10.1109/sispad.2009.5290218

Google Scholar

[10] M. Zilli, D. Esseni, P. Palestri, and L. Selmi, On the apparent mobility in nanometric n-MOSFET, IEEE Electron Device Lett., vol. 28, no. 11, p.1036–1039, Nov. (2007).

DOI: 10.1109/led.2007.907553

Google Scholar

[11] M. G. Pala, C. Buran, S. Poli, and M. Mouis, Full quantum treatment of surface roughness effects in silicon nanowires and double gate, J. Comput. Electron., vol. 8, no. 3/4, p.374–381, Oct. (2009).

DOI: 10.1007/s10825-009-0289-8

Google Scholar

[12] Pai-Chun Chang and Jia Grace Lu, ZnO Nanowire Field-Effect Transistors, IEEE transactions on electron devices, vol. 55, no. 11, november (2008).

DOI: 10.1109/ted.2008.2005181

Google Scholar

[13] M. V. Fischetti and S. E. Laux, Monte Carlo studyof electron transportin silicon inversion layers, Phys. Rev. B, vol. 48, no. 4, p.2244–2274, Jul. (1993).

DOI: 10.1103/physrevb.48.2244

Google Scholar

[14] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, UK: Cambridge University Press, (1998).

Google Scholar

[15] J. Wang, E. Polizzi and M. Lundstrom, A computational study of ballistic silicon nanowire transistors, IEEE International Electron Dev. Meeting (IEDM), Tech. Digest, pp.695-698, Dec. 8-10 (2003).

DOI: 10.1109/iedm.2003.1269375

Google Scholar

[16] H. Majima, Y. Saito and T. Hiramoto, Impact of quantum mechanical effects on design of nano-scale narrow channel n- and p-type MOSFETs, IEEE International+ Electron Dev. Meeting (IEDM) Tech. Digest, pp.951-954, Dec. 3-5 (2001).

DOI: 10.1109/iedm.2001.979618

Google Scholar

[17] S. Jin, T. -W. Tang, and M. V. Fischetti, Simulation of silicon nanowire transistors using Boltzmann transport equation under relaxation time approximation, IEEE Trans. Electron Devices, vol. 55, no. 3, p.727–736, Mar. (2008).

DOI: 10.1109/ted.2007.913560

Google Scholar