[1]
G. M. J. Herbert, S. Iniyan, E. Sreevalsan and S. Rajapandian: A Review of Wind Energy Technologies. Renewable and Sustainable Energy Reviews Vol. 11 (2007) p.1117–1145.
DOI: 10.1016/j.rser.2005.08.004
Google Scholar
[2]
B. Schölkopf, A. Smola and K. R. Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation Vol. 10 (1998) pp.1299-1319.
DOI: 10.1162/089976698300017467
Google Scholar
[3]
David M.J. Tax and P. W Duin: Support Vector Domain Description. Patten Recognition Letter Vol. 20 (1999) pp.1191-1199.
DOI: 10.1016/s0167-8655(99)00087-2
Google Scholar
[4]
David M.J. Tax and P. W Duin: Support Vector Data Description. Machine Learning Vol. 54 (2004) pp.45-66.
DOI: 10.1023/b:mach.0000008084.60811.49
Google Scholar
[5]
Y. H. Liu, S. H. Lin, Y. L. Hsueh and M. J. Lee: Automatic Target Defect Identification for TFT-LCD Array Process Inspection Using Kernel FCM-based Fuzzy SVDD Ensemble. Expert Systems with Applications Vol. 36 (2009) p.1978-(1998).
DOI: 10.1016/j.eswa.2007.12.015
Google Scholar
[6]
A. Kusiak, H. Zheng and Z. Song: Models for Monitoring Wind Farm Power. Renewable Energy Vol. 34 (2009) pp.583-590.
DOI: 10.1016/j.renene.2008.05.032
Google Scholar
[7]
H. Hoffmann: Kernel PCA for Novelty Detection. Pattern Recognition Vol. 40 (2007) p.863–874.
DOI: 10.1016/j.patcog.2006.07.009
Google Scholar
[8]
Y. H. Liu, Y. C. Liu and Y. Z. Chen: Fast Support Vector Data Descriptions for Novelty Detection. IEEE Trans. Neural Networks 21 (2010) pp.1296-1313.
DOI: 10.1109/tnn.2010.2053853
Google Scholar
[9]
Y. H. Liu, Y. C. Liu and Y. Z. Chen: High-speed Inline Defect Inspection for TFT-LCD Array Process Using a Novel Support Vector Data Description. Expert Systems with Applications Vol. 38 (2011) pp.6222-6231.
DOI: 10.1016/j.eswa.2010.11.046
Google Scholar
[10]
T. Bouno, T. Yuji, T. Hamada and T. Hideaki: Failure Forecast Diagnosis of Small Wind Turbine using Acoustic Emission Sensor. KIEE International Transactions on Electrical Machinery and Energy Conversion Systems Vol. 5-B (2005) pp.78-83.
Google Scholar
[11]
W.Q. Jeffries, J .A. Chambers and D.G. lnfield: Experience with Bicoherence of Electrical Power for Condition Monitoring of Wind Turbine Blades. IEE Proceedings of Vision, Image and Signal Processing Vol 145 (1998) pp.141-148.
DOI: 10.1049/ip-vis:19982013
Google Scholar
[12]
Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn and C. K. Song: Condition Monitoring and Fault Detection of Wind Turbines and Related Algorithms: A Review. Renewable and Sustainable Energy Reviews Vol. 13 (2009) p.1–39.
DOI: 10.1016/j.rser.2007.05.008
Google Scholar
[13]
C.C. Ciang, J.R. Lee and H.J. Bang: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. Vol. 19 (2008).
DOI: 10.1088/0957-0233/19/12/122001
Google Scholar
[14]
L. M. Popa, F. Blaabjerg and I. Boldea: Wind Turbine Generator Modeling and Simulation Where Rotational Speed is the Controlled Variable. IEEE Tran. Industry Applications Vol. 40 (2004).
DOI: 10.1109/tia.2003.821810
Google Scholar
[15]
J. B. Ekanayake, L. Holdsworth, X.G. Wu and N. Jenkins: Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines. IEEE Transactions on Power System Vol. 18 (2003).
DOI: 10.1109/tpwrs.2003.811178
Google Scholar
[16]
Y. Amirat, M.E.H. Benbouzid, B. Bensaker and R. Wamkeue: Condition Monitoring and Fault Diagnosis in Wind Energy Conversion Systems: A Review. Conference on Electric Machines and Drives (2007).
DOI: 10.1109/iemdc.2007.383639
Google Scholar