Gases Effects for Synthesis ZnO Nanostructures Using Carbon Assisted

Article Preview

Abstract:

The morphologies of ZnO nanostructured were synthesized by carbon assisted. The materials source will be prepared by mixing Zn, ZnO and coconut shell charcoal or graphite. The materials source and silicon substrates were put in quartz tube of furnace, heated in difference gases. When, the temperature was cooled down to natural room temperature. The materials sources and silicon substrates will be studied by scanning electron microscope (SEM) and an energy dispersive X-rays instrument (EDX). The results showed that ZnO nanostructures materials such as nanotatrapods, nanowires, nanorods and nanoparticles can be observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-24

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.W. Wang, L.D. Zhang, G.Z. Wang, C.H. Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties, Crystal Growth 234 (2002) 171-175.

DOI: 10.1016/s0022-0248(01)01661-x

Google Scholar

[2] C.X. Xu, X.W. Sun, B.J. Chen, P. Shum, Nanostructural zinc oxide and its electrical and optical properties, Appl. Phys. 95(2) (2004) 661-666.

DOI: 10.1063/1.1632549

Google Scholar

[3] J. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension : synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32 (1999) 435-445.

DOI: 10.1021/ar9700365

Google Scholar

[4] K. Yu, Y. Zhang, L. Luo, W. Wang, Z. Zhu, J. Wang, Y. Cui, H. Ma, W. Lu, Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon, Appl. Phys. A 79 (2004) 443–446.

DOI: 10.1007/s00339-004-2706-y

Google Scholar

[5] H. Kind, H. Yan, M. Law, B. Messer, P. Yang, Nanowire ultraviolet photodetectors and optical switches, Adv. Mater. Weinheim, Ger. 14 (2002) 158-160.

DOI: 10.1002/1521-4095(20020116)14:2<158::aid-adma158>3.0.co;2-w

Google Scholar

[6] Z. Fan, P-C. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C-H. Lin, H-P. Lee, Photoluminescence and polarized photodetection of single ZnO nanowires, Appl. Phys. Lett. 85 (2004) 6128-6137.

DOI: 10.1063/1.1841453

Google Scholar

[7] J. J. Wu, S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.

DOI: 10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j

Google Scholar

[8] X. S. Peng, L. D. Zhang, G. W. Meng, X. Y. Yuan, Y. Lin, Y. T Tian, Synthesis of Zn nanofibres through simple thermal vapour-phase deposition, J. Phys. D: Appl. Phys. 36 (2003) L35–L38.

DOI: 10.1088/0022-3727/36/6/101

Google Scholar

[9] D. Banerjee, J. Y. Lao, D. Z. Wang, J. Y. Huang, Z. F. Ren D. Steeves, B. Kimball, M. Sennett, Large-quantity free-standing ZnO nanowires, Appl. Phys. Lett. 83 (2003) 2061-(2064).

DOI: 10.1063/1.1609036

Google Scholar

[10] X. Y. Kong, Y. Ding, Z. L. Wang, Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes, J. Phys. Chem. B108 (2004) 570-574.

DOI: 10.1021/jp036993f

Google Scholar

[11] A.B. Djuristic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui, C. Surya, Photoluminescence and electron paramagnetic resonance of ZnO tatrapod structures, Adv. Funct. Mater. 14(2004) 856-864.

DOI: 10.1002/adfm.200305082

Google Scholar

[12] C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Growth of zinc oxide nanowires on silicon(100), Tamkang J. Sci. and Eng. 6(2) (2003) 127- 132.

Google Scholar

[13] S. -H. Li, X. -F. Zhu,Y. -P. Zhao, Carbon-assisted growth of SiOxnanowires, J. Phys. Chem. B108 (2004) 17032-17041.

Google Scholar