[1]
Ridley N, Metals for superplastic forming. In: Giuliano G (ed. ) Superplastic forming of advanced metallic materials, Cambridge, UK: Woodhead Publishing Limited; 2011, pp.3-33.
DOI: 10.1533/9780857092779.1.3
Google Scholar
[2]
Chandra N. Constitutive behaviour of superplastic materials. Int J Non Linear Mech; 37 (2002) 461-484.
Google Scholar
[3]
Jovane F. An approximate analysis of the superplastic forming of a thin circular diaphragm. Int J Mech Sci; 10 (1968) 403-427.
DOI: 10.1016/0020-7403(68)90005-2
Google Scholar
[4]
Enikeev FU, Kruglov AA. An analysis of the superplastic forming of a thin circular diaphragm. Int J Mech Sci; 37 (1995) 473-483.
DOI: 10.1016/0020-7403(94)00081-t
Google Scholar
[5]
Giuliano G. Equivalent flow stress at the sheet dome apex in superplastic bulging tests. CMAS Conference on Computational Modelling and Advanced Simulations, Bratislava, Slovakia, (2009).
Google Scholar
[6]
Giuliano G. Thickness and strain rate at the sheet dome apex in superplastic bulge forming tests. Int J Mater Forming; 2, 1 (2009) 375-378.
DOI: 10.1007/s12289-009-0456-2
Google Scholar
[7]
Giuliano G. Mathematical modelling of superplastic metal sheet forming processes. In: Giuliano G (ed. ) Superplastic forming of advanced metallic materials, Cambridge, UK: Woodhead Publishing Limited; 2011, pp.115-135.
DOI: 10.1533/9780857092779.2.115
Google Scholar
[8]
Giuliano G, Giovinco G. Pressure influence on the final thickness at the dome apex in superplastic bulging tests for magnesium-based AZ31 alloy. ESAFORM Conference on Material Forming, Belfast, Northern Ireland, UK, (2011).
DOI: 10.1063/1.3589535
Google Scholar
[9]
Giuliano G, Franchitti S. On the evaluation of superplastic characteristics using the finite element method. Int J Mach Tool Manu; 47 (2007) 471-476.
DOI: 10.1016/j.ijmachtools.2006.06.009
Google Scholar