[1]
Suresh, S., Mortensen, A,. Fundamentals of Functionally Graded Materials. Barnes and Noble, New York, (1998).
Google Scholar
[2]
Yamanouchi, A., Koizumi, M.,. Functionally gradient materials. In: Proceeding of the First International Symposium in Japan, (1990).
Google Scholar
[3]
Fukui, Y,. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force. Int. J. Jpn Soc. Mech. Eng. 3 (34), 144–148, (1991).
DOI: 10.1299/jsmec1988.34.144
Google Scholar
[4]
Reddy, J.N., Cheng, Z. Q,. Three dimensional trenchant deformations of functionally graded rectangular plates. Eur. J. Mech. A Solids 20, (2001).
DOI: 10.1016/s0997-7538(01)01174-3
Google Scholar
[5]
Fuchiyama, T., Noda, N., Tsuji, T., Obata, Y,. Analysis of thermal stress and stress intensity factor of functionally gradient materials. Ceramic. Trans. Funct. Gradient Mater. 34, 425–432. 841–855, (1993).
Google Scholar
[6]
Nan, C.W., Yuan, R.Z., Zhang, L. M,. The physics of metal/ceramic functionally gradient materials. Ceramic. Trans. Funct. Gradient Mater. 34, 75–82, (1993).
Google Scholar
[7]
Koizumi, M.,. FGM activities in Japan. Composites Part B 28 (1–2), 1–40, (1997).
Google Scholar
[8]
Brush, D.O., Almroth, B. O,. Buckling of Bars, Plates and Shells. McGraw-Hill, New York, (1975).
Google Scholar
[9]
Leissa, A.W.,. Review of recent developments in laminated composite plate buckling analysis. Composite Mat. Tech. 45, 1–7, (1992).
Google Scholar
[10]
Leissa AW. Vibration of plates. NASA, SP-160, (1969).
Google Scholar
[11]
Birman, V., Bert, C. W, . Buckling of composite plate and shells subject to elevated temperature. Trans. ASME J. Appl. 60, 514–519, (1993).
DOI: 10.1115/1.2900823
Google Scholar
[12]
Pandey, M.D., Sherbourne, A. N,. Buckling of anisotropic composite plates under stress gradient. J. Engrg. Mech. 117 (2), 260–275, (1991).
DOI: 10.1061/(asce)0733-9399(1991)117:2(260)
Google Scholar
[13]
Markworth AJ, Ramesh KS, Parks Jr WP. Modeling studies applied to functionally graded materials. J Mater Sci (1995); 30: 2183–93.
DOI: 10.1007/bf01184560
Google Scholar
[14]
Huang X-L, Shen H-S. Nonlinear vibration and dynamic response of functionally graded plates in thermal environment. International Journal of Solids and Structures (2004); 41: 2403–27.
DOI: 10.1016/j.ijsolstr.2003.11.012
Google Scholar
[15]
Bouazza. M, Tounsi. A, Adda-Bedia.E. A, Megueni. A,. Thermal buckling of sigmoid functionally graded plates using first order shear deformation theory. MAMERN09: 3rd International Conference on Approximation Methods and Numerical Modeling in Environment and Natural Resources Pau (France), June 8-11, (2009).
DOI: 10.4028/www.scientific.net/amm.61.25
Google Scholar
[16]
R. M. S. Gowda and K. A. V. Padalai, Thermal buckling of orthotropic plates. In Studies in Structural Mechanics (Edited by K. A. V. Padalai), pp.9-44. IIT, Madras (1970).
Google Scholar
[17]
Kari R. Thangaratnam, Palaninathan and j. Ramachandran, Thermal buckling of composite laminated plates. Computers & Structures vol. 32, no. 5. pp.1117-1124, (1989) Rimed in Great Britain.
DOI: 10.1016/0045-7949(89)90413-6
Google Scholar