A New Methodology for an Optimal Shape Design

Article Preview

Abstract:

The aim of this paper is to study the implementation of an efficient and reliable methodology for shape optimization problems where the objective function and constraints are not known explicitly and are dependent on the Finite Element Analysis (FEA). It is based on the Simultaneous Perturbation Stochastic Approximation (SPSA) method for solving unconstrained continuous optimization problems. We also propose Penalty SPSA (PSPSA) for solving constrained optimization problems, the constraints are handled using exterior point penalty functions within an algorithm that combines SPSA and exact penalty transformations. This paper presents a new structural optimization methodology that combines shape optimization, geometric modeling, FEA and PSPSA method to successfully optimize structural optimization problems. Several tests have been performed on some well known benchmark functions to demonstrate the robustness and high performance of the suggested methodology. In addition, an illustrative two-dimensional structural problem has been solved in a very efficient way. The numerical results demonstrate the robustness and high performance of the suggested methodology for structural optimization problems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-54

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Bangerth, H. Klie, V. Matossian, M. Parashar, and M.F. Wheeler: An Autonomic Reservoir Framework for the Stochastic Optimization of Well Placement, Cluster Computing Vol. 8 (2005), p.255–269.

DOI: 10.1007/s10586-005-4093-3

Google Scholar

[2] H. J. C. Barbosa, A. C. C. Lemongeb, and C. C. H. Borges: A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization, Engineering Structures Vol. 30 (2008), pp.3708-3723.

DOI: 10.1016/j.engstruct.2008.06.014

Google Scholar

[3] S. Bhatnagar: Adaptive Multivariate Three-Timescale Stochastic Approximation Algorithms for Simulation Based Optimization, ACM Transactions on Modelling and Computer Simulation Vol. 15 (2005), p.74–107.

DOI: 10.1145/1044322.1044326

Google Scholar

[4] S. Bhatnagar, Michael C. Fu, Steven I. Marcus and I-J. Wang: Two-Timescale Simultaneous Perturbation Stochastic Approximation Using Deterministic Perturbation Sequences, ACM Transactions on Modelling and Computer Simulation Vol. 13 (2003).

DOI: 10.1145/858481.858486

Google Scholar

[5] M. E. Botkin: Shape optimization of plate and shell structures, AIAA J Vol. 20 (1982), pp.268-273.

DOI: 10.2514/3.51074

Google Scholar

[6] M. E. Botkin, and J. A. Bennett: Shape optimization of three dimensional folded plate structures, AIAA J Vol. 23 (1985), p.1804–1810.

DOI: 10.2514/3.9169

Google Scholar

[7] C. A. Coello: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Engrg. Vol. 191 (2002), pp.1245-1287.

DOI: 10.1016/s0045-7825(01)00323-1

Google Scholar

[8] X. Duan, and T. Sheppart: Shape optimization using FEA software: A V-shaped anvil as an example, Journal of Materials Processing Technology Vol. 120 (2002), pp.426-431.

DOI: 10.1016/s0924-0136(01)01200-6

Google Scholar

[9] S. K. S. Fan, Y. C. Liang, and E. Zahara: A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search, Computers and Industrial Engineering Vol. 50 (2006), pp.401-425.

DOI: 10.1016/j.cie.2005.01.022

Google Scholar

[10] A. Georgieva, and I. Jordanov: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms, European Journal of Operational Research Vol. 196 (2009), p.413–422.

DOI: 10.1016/j.ejor.2008.03.019

Google Scholar

[11] L. Gerencsér, G. Kozmann, and Z. Vágó: SPSA for Non-Smooth Optimization with Application in ECG Analysis, in: Proc. of IEEE Conf. on Decision and Control, IEEE, Tampa, (1998), pp.3907-3908.

DOI: 10.1109/cdc.1998.761839

Google Scholar

[12] L. Gerencsér, G. Kozmann, Z. Vágó, and K. Haraszti: The Use of the SPSA Method in ECG Analysis, in: Proc. of IEEE Conf. of the American Control, Anchorage, AK, (2002), pp.2583-2588.

Google Scholar

[13] W. Gong, Z. Cai, and L. Jiang: Enhancing the performance of differential evolution using orthogonal design method, Applied Mathematics and Computation Vol. 206 (2008), pp.56-69.

DOI: 10.1016/j.amc.2008.08.053

Google Scholar

[14] L. Holzleitner, and K. G. Mahmoud: Structural shape optimization using MSC/NASTRAN and sequential quadratic programming, Comput Struct Vol. 70 (1999), pp.487-514.

DOI: 10.1016/s0045-7949(98)00179-5

Google Scholar

[15] M. H. Imam: Three dimensional shape optimization, Int J Numer Meth Engng Vol. 18 (1982), pp.661-673.

DOI: 10.1002/nme.1620180504

Google Scholar

[16] D.A. Johannsen, E.J. Wegman, J.L. Solka, C.E. and Priebe: Simultaneous Selection of Features and Metric for Optimal Nearest Neighbor Classification, Communications in Statistics–Theory and Methods Vol. 33 (2004), pp.2137-2157.

DOI: 10.1081/sta-200026587

Google Scholar

[17] G. Kharmanda, A. El Hami and N. Olhoff: Global Reliability-Based Design Optimization, International Journal of Nonconvex Optimization and its Applications Vol. 74 (2003), pp.255-274.

DOI: 10.1007/978-1-4613-0251-3_14

Google Scholar

[18] N. L. Kleinman, S.D. Hill, and V. A. Ilenda: SPSA/SIMMOD Optimization of Air Traffic Delay Cost, in: Proc. of IEEE Int. Conf. on American Control, IEEE, Albuquerque, (1997), pp.1121-1125.

DOI: 10.1109/acc.1997.609707

Google Scholar

[19] L. Lamberti: An efficient simulated annealing algorithm for design optimization of truss structures, Computers and Structures Vol. 86 (2008), p.1936-(1953).

DOI: 10.1016/j.compstruc.2008.02.004

Google Scholar

[20] D. C. Lee, and J. I. Lee: An integrated design for double-layered structures, Finite Elements in Analysis and Design Vol. 41 (2004), pp.133-146.

DOI: 10.1016/j.finel.2004.05.002

Google Scholar

[21] K. S. Lee, and Z. W. Geem: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg. Vol. 194 (2005), pp.3902-3933.

DOI: 10.1016/j.cma.2004.09.007

Google Scholar

[22] D. G. Luenberger: Introduction to Linear and Nonlinear Programming, Addison Wesley, (1973).

Google Scholar

[23] Y. Maeda: Real-Time Control and Learning Using Neuro-Controller via Simultaneous Perturbation for Flexible Arm System, ACM Transactions on Modelling and Computer Simulation Vol. 15 (2005), p.74–107.

DOI: 10.1109/acc.2002.1025174

Google Scholar

[24] J.L. Maryak, and J.C. Spall: Simultaneous Perturbation Optimization for Efficient Image Restoration, IEEE Transactions on Aerospace and Electronic Systems Vol. 41 (2005), pp.356-361.

DOI: 10.1109/taes.2005.1413767

Google Scholar

[25] A. Mohsine, G. Kharmanda and A. El Hami: Improved method as a robust toll for reliability based design optimization, International Journal of Structural and Multidisciplinary Optimization Vol. 32 (2006), pp.203-213.

DOI: 10.1007/s00158-006-0013-2

Google Scholar

[26] M. Pourazady, and Z. Fu: An integrated approach to structural shape optimization, Comput. Struct. Vol. 60 (1996), pp.279-289.

Google Scholar

[27] M. Redhe, and L. Nilsson: Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique, Struct. Multidisc Optim. Vol. 27 (2004), pp.411-420.

DOI: 10.1007/s00158-004-0396-x

Google Scholar

[28] J. C. Spall: Multivariate Stochastic Approximation using a Simultaneous Perturbation Gradient Approximation, IEEE transactions on automatic control Vol. 37 (1992), pp.332-341.

DOI: 10.1109/9.119632

Google Scholar

[29] J. C. Spall: An Overview of the Simultaneous Perturbation Method for Efficient Optimization, Johns Hopkins APL Technical Digest Vol. 19 (1998), pp.482-492.

Google Scholar

[30] P. Sadegh, and J.C. Spall: Optimal Random Perturbations for Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation, Proceedings of the American Control Conference (1997) Albuquerque, NM, 3582-3586.

DOI: 10.1109/acc.1997.609490

Google Scholar

[31] W. Tang, L. Tong, and Y. Gu: Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables, Int. J. Numer. Meth. Engng Vol. 62 (2005), pp.1737-1762.

DOI: 10.1002/nme.1244

Google Scholar

[32] P. Tanskanen: The evolutionary structural optimization method: theoretical aspects, Comput. Methods Appl. Mech. Engrg. Vol. 191 (2002), pp.5485-5498.

DOI: 10.1016/s0045-7825(02)00464-4

Google Scholar

[33] L. Wang, K. Chen, Y. S. Ong (Eds). Advances in Natural Computation. Part III, Springer Science & Business Publisher, Changsha, China, (2005).

Google Scholar

[34] Z. Xinchao: A perturbed particle swarm algorithm for numerical optimization, Applied Soft Computing Vol. 10 (2010), pp.119-124.

DOI: 10.1016/j.asoc.2009.06.010

Google Scholar