[1]
U.F. Kocks, C.N. Tomé and H.R. Wenk: Texture and anisotropy (1998), Cambridge University Press.
Google Scholar
[2]
Y. Benveniste: A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials, Vol. 6 (1987), pp.147-157.
DOI: 10.1016/0167-6636(87)90005-6
Google Scholar
[3]
Y. Benveniste, G.J. Dvorak and T. Chen: On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, Journal of Mechanics and Physics of Solids, Vol. 39 (1991), pp.927-946.
DOI: 10.1016/0022-5096(91)90012-d
Google Scholar
[4]
T. Chen, G.J. Dvorak and Y. Benveniste: Mori-Tanaka estimates of the overall elastic moduli of certain composite materials, Journal of Applied Mechanics, Vol. 59 (1992), pp.539-546.
DOI: 10.1115/1.2893757
Google Scholar
[5]
Hexcel France: Hextool Datasheet (information on www. hexcel. com).
Google Scholar
[6]
R. Hill: The essential structure of constitutive laws for metals composites and polycrystals, Journal of the Mechanics and Physics of Solids, Vol. 15 (1967), pp.79-95.
DOI: 10.1016/0022-5096(67)90018-x
Google Scholar
[7]
J.D. Eshelby: The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society London, Issue A241 (1957), p.376–396.
Google Scholar
[8]
R. Hill: The essential structure of constitutive laws for metals composites and polycrystals, Journal of the Mechanics and Physics of Solids, Vol. 13 (1965), pp.89-101.
Google Scholar
[9]
R. Morris: Elastic constants of polycrystals, International Journal of Engineering Science, Vol. 8 (1970), pp.49-61.
Google Scholar
[10]
S. Fréour, F. Jacquemin and R. Guillén: Extension of Mori-Tanaka approach to hygro-elastic loading of fiber-reinforced Composites – Comparison with Eshelby-Kröner self-consistent model, Journal of Reinforced Plastics and Composites, Vol. 25 (2006).
DOI: 10.1177/0731684406064998
Google Scholar
[11]
J. Berryman, P. Berge: Critique of two explicit schemes for estimating elastic properties of multiphase composites, Mechanics of Materials, Vol. 22 (1996), pp.149-164.
DOI: 10.1016/0167-6636(95)00035-6
Google Scholar
[12]
E. Kröner: Berechnung der elastischen Konstanten des Vielkristalls aus des Konstanten des Einkristalls, Zeitschrift für Physik, Vol. 151 (1958), pp.504-508.
DOI: 10.1007/bf01337948
Google Scholar
[13]
E. Kröner: Zur plastischen verformung des vielkristalls, Acta Metallurgica, Vol. 9 (1961), pp.155-161.
DOI: 10.1016/0001-6160(61)90060-8
Google Scholar
[14]
J.W. Hutchinson: Elastic-plastic behaviour of polycrystalline metals and composites, Proceedings of the Royal Society London, issue 319 (1970), pp.247-272.
DOI: 10.1098/rspa.1970.0177
Google Scholar
[15]
G.J. Weng: A self-consistent relation for the time-dependent creep of polycrystals, International Journal of Plasticity, Vol. 9 (1993), pp.181-198.
DOI: 10.1016/0749-6419(93)90028-o
Google Scholar
[16]
E. Le Pen, D. Baptiste: Multi-scale fatigue behaviour modelling of Al/Al2O3 short fibre composites by a micro-macro approach, International Journal of Fatigue, Vol. 24 (2002), pp.205-214.
DOI: 10.1016/s0142-1123(01)00074-3
Google Scholar
[17]
D. Baptiste: Non Linear Behavior Micromechanical Multi-scale Modelling of Discontinuous Reinforced Composites, Materials Science Forum, Vol. 426-432 (2003), pp.3939-3944.
DOI: 10.4028/www.scientific.net/msf.426-432.3939
Google Scholar
[18]
F. Jacquemin, S. Fréour and R. Guillén: A hygro-elastic self-consistent model for fiber-reinforced composites, Journal of Reinforced Plastics and Composites, Vol. 24 (2005), 485-502.
DOI: 10.1177/0731684405045014
Google Scholar
[19]
A. Agbossou, J. Pastor: Thermal stresses and thermal expansion coefficients of n-layered fiber-reinforced composites, Composite Science and Technology, Vol. 57 (1997), pp.249-260.
DOI: 10.1016/s0266-3538(96)00137-6
Google Scholar
[20]
R.W. Vook, F. Witt: Thermally induced strains in cubic metal films, Journal of Applied Physics, Vol. 39 (1968), pp.2773-2776.
DOI: 10.1063/1.1656671
Google Scholar
[21]
U. Welzel, S. Fréour: Extension of the Vook-Witt and inverse Vook-Witt elastic grain-interaction models to general loading states, Philosophical Magazine, Vol. 87 (2007), pp.3921-3943.
DOI: 10.1080/14786430701203176
Google Scholar
[22]
E. Lacoste, K. Szymanska, S. Terekhina, S. Fréour, F. Jacquemin, M. Salvia: A multi-scale analysis of local stresses during the cure of a composite tooling material, In Press (Composites Part A).
DOI: 10.1007/s12289-012-1100-0
Google Scholar
[23]
J.A. Guemes: Curing Residual Stresses and Failure Analysis in Composite Cylinders, Journal of Reinforced Plastics and Composites, 13 (1994), pp.408-419.
DOI: 10.1177/073168449401300502
Google Scholar
[24]
K. Ogi, H.S. Kim, T. Maruyama and Y. Takao: The infuence of hygrothermal conditions on the damage processes in quasi-isotropic carbon/epoxy laminates, Composites Science and Technology, Vol. 59 (1999), p.2375.
DOI: 10.1016/s0266-3538(99)00088-3
Google Scholar
[25]
H. Krenchel, in: Fibre Reinforcements (1964), Akademisk Forlag, Copenhagen, Denmark.
Google Scholar
[26]
E.T. Thostenson, T.W. Chou: On the elastic properties of carbon nanotube-based composites: modeling and characterisation, Journal of Physics D: Applied Physics, Vol. 36 (2003), pp.573-582.
DOI: 10.1088/0022-3727/36/5/323
Google Scholar