A Multi-Scale Analysis of Materials Reinforced by Inclusions Randomly Oriented in the Ply Plane

Article Preview

Abstract:

The present work aims to investigate the validity of Eshelby-Kröner self-consistent model [1] for thermoelastic behaviour, in the case of a material reinforced by inclusions randomly oriented in the ply plane. The model provides predictive information on the properties and multi-scale mechanical states experienced by the material, accounting for its constituents properties, but also their morphology. However, it cannot reliably account for multiple inclusion morphologies (shape and orientation) in the material [2, 3, 4]. A study of the two applicable formulations and their limits leads to suggest a mixed formulation as an acceptable compromise between those alternatives. The results of this original approach are also described in the case of a thermo-mechanical load.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-64

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U.F. Kocks, C.N. Tomé and H.R. Wenk: Texture and anisotropy (1998), Cambridge University Press.

Google Scholar

[2] Y. Benveniste: A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials, Vol. 6 (1987), pp.147-157.

DOI: 10.1016/0167-6636(87)90005-6

Google Scholar

[3] Y. Benveniste, G.J. Dvorak and T. Chen: On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, Journal of Mechanics and Physics of Solids, Vol. 39 (1991), pp.927-946.

DOI: 10.1016/0022-5096(91)90012-d

Google Scholar

[4] T. Chen, G.J. Dvorak and Y. Benveniste: Mori-Tanaka estimates of the overall elastic moduli of certain composite materials, Journal of Applied Mechanics, Vol. 59 (1992), pp.539-546.

DOI: 10.1115/1.2893757

Google Scholar

[5] Hexcel France: Hextool Datasheet (information on www. hexcel. com).

Google Scholar

[6] R. Hill: The essential structure of constitutive laws for metals composites and polycrystals, Journal of the Mechanics and Physics of Solids, Vol. 15 (1967), pp.79-95.

DOI: 10.1016/0022-5096(67)90018-x

Google Scholar

[7] J.D. Eshelby: The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society London, Issue A241 (1957), p.376–396.

Google Scholar

[8] R. Hill: The essential structure of constitutive laws for metals composites and polycrystals, Journal of the Mechanics and Physics of Solids, Vol. 13 (1965), pp.89-101.

Google Scholar

[9] R. Morris: Elastic constants of polycrystals, International Journal of Engineering Science, Vol. 8 (1970), pp.49-61.

Google Scholar

[10] S. Fréour, F. Jacquemin and R. Guillén: Extension of Mori-Tanaka approach to hygro-elastic loading of fiber-reinforced Composites – Comparison with Eshelby-Kröner self-consistent model, Journal of Reinforced Plastics and Composites, Vol. 25 (2006).

DOI: 10.1177/0731684406064998

Google Scholar

[11] J. Berryman, P. Berge: Critique of two explicit schemes for estimating elastic properties of multiphase composites, Mechanics of Materials, Vol. 22 (1996), pp.149-164.

DOI: 10.1016/0167-6636(95)00035-6

Google Scholar

[12] E. Kröner: Berechnung der elastischen Konstanten des Vielkristalls aus des Konstanten des Einkristalls, Zeitschrift für Physik, Vol. 151 (1958), pp.504-508.

DOI: 10.1007/bf01337948

Google Scholar

[13] E. Kröner: Zur plastischen verformung des vielkristalls, Acta Metallurgica, Vol. 9 (1961), pp.155-161.

DOI: 10.1016/0001-6160(61)90060-8

Google Scholar

[14] J.W. Hutchinson: Elastic-plastic behaviour of polycrystalline metals and composites, Proceedings of the Royal Society London, issue 319 (1970), pp.247-272.

DOI: 10.1098/rspa.1970.0177

Google Scholar

[15] G.J. Weng: A self-consistent relation for the time-dependent creep of polycrystals, International Journal of Plasticity, Vol. 9 (1993), pp.181-198.

DOI: 10.1016/0749-6419(93)90028-o

Google Scholar

[16] E. Le Pen, D. Baptiste: Multi-scale fatigue behaviour modelling of Al/Al2O3 short fibre composites by a micro-macro approach, International Journal of Fatigue, Vol. 24 (2002), pp.205-214.

DOI: 10.1016/s0142-1123(01)00074-3

Google Scholar

[17] D. Baptiste: Non Linear Behavior Micromechanical Multi-scale Modelling of Discontinuous Reinforced Composites, Materials Science Forum, Vol. 426-432 (2003), pp.3939-3944.

DOI: 10.4028/www.scientific.net/msf.426-432.3939

Google Scholar

[18] F. Jacquemin, S. Fréour and R. Guillén: A hygro-elastic self-consistent model for fiber-reinforced composites, Journal of Reinforced Plastics and Composites, Vol. 24 (2005), 485-502.

DOI: 10.1177/0731684405045014

Google Scholar

[19] A. Agbossou, J. Pastor: Thermal stresses and thermal expansion coefficients of n-layered fiber-reinforced composites, Composite Science and Technology, Vol. 57 (1997), pp.249-260.

DOI: 10.1016/s0266-3538(96)00137-6

Google Scholar

[20] R.W. Vook, F. Witt: Thermally induced strains in cubic metal films, Journal of Applied Physics, Vol. 39 (1968), pp.2773-2776.

DOI: 10.1063/1.1656671

Google Scholar

[21] U. Welzel, S. Fréour: Extension of the Vook-Witt and inverse Vook-Witt elastic grain-interaction models to general loading states, Philosophical Magazine, Vol. 87 (2007), pp.3921-3943.

DOI: 10.1080/14786430701203176

Google Scholar

[22] E. Lacoste, K. Szymanska, S. Terekhina, S. Fréour, F. Jacquemin, M. Salvia: A multi-scale analysis of local stresses during the cure of a composite tooling material, In Press (Composites Part A).

DOI: 10.1007/s12289-012-1100-0

Google Scholar

[23] J.A. Guemes: Curing Residual Stresses and Failure Analysis in Composite Cylinders, Journal of Reinforced Plastics and Composites, 13 (1994), pp.408-419.

DOI: 10.1177/073168449401300502

Google Scholar

[24] K. Ogi, H.S. Kim, T. Maruyama and Y. Takao: The infuence of hygrothermal conditions on the damage processes in quasi-isotropic carbon/epoxy laminates, Composites Science and Technology, Vol. 59 (1999), p.2375.

DOI: 10.1016/s0266-3538(99)00088-3

Google Scholar

[25] H. Krenchel, in: Fibre Reinforcements (1964), Akademisk Forlag, Copenhagen, Denmark.

Google Scholar

[26] E.T. Thostenson, T.W. Chou: On the elastic properties of carbon nanotube-based composites: modeling and characterisation, Journal of Physics D: Applied Physics, Vol. 36 (2003), pp.573-582.

DOI: 10.1088/0022-3727/36/5/323

Google Scholar