Early-Stage Design of Robotic Manipulator Using Dual Visual Perception

Article Preview

Abstract:

Many service mobile robots have an articulated robotic manipulator mounted on their platform. The mobile platform extends the workspace of the arm, whereas the arm offers several operational functionalities. The basic idea is to mount two cameras to the robotic arm. One camera provides the perception of the surrounding environment and navigation of the robot, the second one located on the robot arm provides for the perception of the object of cooperation. This paper deals with an early-stage design process of the mentioned robotic manipulator using dual visual perception. It includes kinematic, dynamic and stress-strength analysis. For the kinematic analysis the homogeneous matrix method and for dynamic analysis the Newton-Euler method has been used. These analyses are required for control solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-324

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Duchoň, D. Huňady, M. Dekan, A. Babinec, Optimal navigation for mobile robot in unknown environment, in: Applied Mechanics and Materials, Vol. 282, 2013, pp.33-38.

DOI: 10.4028/www.scientific.net/amm.282.33

Google Scholar

[2] M. Kelemen, D. J. Colville, T. Kelemenová, I. Virgala, Ľ. Miková, A Concept of the Differentially Driven Three Wheeled Robot, in: International Journal of Applied Mechanics and Engineering, Volume 18, Issue 3, 2013, pp.687-698.

DOI: 10.2478/ijame-2013-0042

Google Scholar

[3] D. Šimšaj, M. Kelemen, I. Virgala, T. Kelemenová, E. Prada, T. Lipták, Design of Two Legged Robot, in: American Journal of Mechanical Engineering, 2013, pp.355-360.

Google Scholar

[4] A. Gmiterko, I. Virgala, E. Prada, Snake-like Robot Rectilinear Motion Modeling With Different Kinds of Friction Models, in: Modelling of Mechanical and Mechatronics Systems, 2011, pp.133-141.

DOI: 10.1109/ines.2011.5954726

Google Scholar

[5] I. Virgala, M. Kelemen, Experimental Friction Identification of a DC motor, in: International Journal of Mechanics and Applications, Vol. 3, No. 1, 2013, pp.26-30, e-ISSN: 2165-9303.

Google Scholar

[6] B. Shihula, G. Yaoqing, Structural Mechanics, Wuhan University of Technology, (2005).

Google Scholar

[7] F. Trebuňa, F. Šimčák, V. Jurica, Pružnosť a pevnosť I., Technická univerzita v Košiciach, Košice, 2005, ISBN: 8080732280.

Google Scholar

[8] M. W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control, first ed., John Wiley & Sons, Inc., New Jersey, (2005).

Google Scholar

[9] J. Škařupa, V. Mostýn, Teorie průmyslových robotů, Vienala, Košice, (2000).

Google Scholar

[10] B. Tukora, Robotok irányítása, Pécs, (2004).

Google Scholar

[11] R. N. Nazar, Theory of applied Robotics – Kinematics, Dynamics, and Control, second ed., Springer, New York, (2010).

Google Scholar

[12] R. Grepl, Kinematika a dynamika mechatronických systémů, Akademické nakladatelství CERM s. r. o., Brno, (2007).

Google Scholar