[1]
M. Lee, E.Y. Kim and Y. -H. Yoo: Int. J. Impact Eng. Vol. 35 (2008), p.1636.
Google Scholar
[2]
Y. -H. Yoo and H. Shin: Int. J. Impact Eng. Vol. 30 (2004), p.55.
Google Scholar
[3]
J.M. McGlaun and S.L. Thompson: Int. J. Impact Eng. Vol. 10 (1990), p.351.
Google Scholar
[4]
D.J. Gee and D.L. Littlefield: Int. J. Impact Eng. Vol. 26 (2001), p.211.
Google Scholar
[5]
J. Roopchand: Int.J. Eng. Innovative Technol. Vol. 3 (2013), p.228.
Google Scholar
[6]
K. Sterzelmeier, V. Brommer, L. Sinninger: IEEE Trans Magnetics Vol. 37 (2001), p.238.
Google Scholar
[7]
H. Shin and W. Lee: Combust. Explos. Shock Waves Vol. 39 (2003), p.470.
Google Scholar
[8]
H. Shin and W. Lee: Combust. Explos. Shock Waves Vol. 39 (2003), p.479.
Google Scholar
[9]
H. Shin and W. Lee: Int J Impact Eng Vol. 8 (2003), p.465.
Google Scholar
[10]
E. Liden, B. Johansson and B Lundberg: Int. J. Impact Eng. Vol. 32 (2006), p.1696.
Google Scholar
[11]
E. Liden, O. Anderson and B Lundberg: Int. J. Impact Eng. Vol. 38 (2011), p.989.
Google Scholar
[12]
E. Liden, S. Mousavi and B Lundberg: Int. J. Impact Eng. Vol. 40-41 (2012), p.35.
Google Scholar
[13]
H. Shin and Y. -H. Yoo: Combust. Explos. Shock Waves Vol. 39 (2003), p.591.
Google Scholar
[14]
Y. -H. Yoo, S. -H. Paik, J. -B. Kim and H. Shin: Trans. Canadian Soc. Mech. Eng. Vol. 37 (2013), p.1115.
Google Scholar
[15]
Y. -H. Yoo, S. -H. Paik, J. -B. Kim and H. Shin: Eng. Comput. Vol. 29 (2013), p.409.
Google Scholar
[16]
W. Lee, H. -J. Lee, and H. Shin: J. Phys. D: Appl. Phys. Vol. 35 (2002), p.2676.
Google Scholar
[17]
D. Yaziv, Z. Rosenberg and J.P. Riegel III: Penetration capability of yawed long rod penetrators (Proc. 12th Int. Symp. Ballistics, San Antonio, TX, USA, p.202, 1990).
Google Scholar
[18]
D. Yaziv, J.D. Walker and J.P. Riegel III: Analytical model of yawed penetration in the 0 to 90 degrees range (Proc. 13th Int. Symp. Ballistics, Stockholm, Sweden, p.17, 1992).
Google Scholar
[19]
H. Shin, H. -J. Lee, Y. -H Yoo and W. Lee: JSME Int. J. Vol. 47 (2004), p.35.
Google Scholar
[20]
H. Shin and J.B. Kim: J. Eng. Mater. Technol. Vol. 132 (2010), p.021009.
Google Scholar
[21]
H. Shin and J.B. Kim: Description capability of a simple phnomenological model for flow stress of copper in an extended strain rate regime (Proc. 4th Int. Conf. on Design and Analysis of Protective Structures, Jeju, Korea, Paper No. T8-10, 2012).
Google Scholar
[22]
G.R. Johnson and W.H. Cook: A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures (Proc. 7th Int. Symp. Ballistics, Den Haag, Netherlands, p.541, 1983).
Google Scholar
[23]
W. -S. Lee, G. -L. Xiea and C. -F. Lin: Mater. Sci. Eng. Vol. 257 (1998), p.256.
Google Scholar
[24]
G.T. Gray III, S.R. Chen, W. Wright and M.F. Lopez: Constitutive Equations for Annealed Metals Under Compression at High Strain Rates and High Temperatures (Report No. LA-12669-MS, Los Alamos National Laboratory, USA 1994).
Google Scholar
[25]
T. Weerasooriya and P. Moy: Effect of Strain-Rate on the Deformation Behavior of Rolled-Homogeneous-Armor (RHA) Steel at Different Hardnesses, Proc. 2004 X International Congress & Exposition on Experimental & Applied Mechanics (https: /www. sem. org/ Proceedings/ConferencePapers-Paper. cfm?ConfPapersPaperID=24744).
Google Scholar
[26]
C.E. Anderson, Jr., T. Behner, and V. Hohler: J. Appl. Mech. Vol. 80 (2013), p.013801.
Google Scholar