Optimal Allocation of Risk for Portfolios

Article Preview

Abstract:

In this paper, we propose a framework of the optimal risk allocation, under the pareto optimal we give equivalent conditions and provided its representation theorem under Pareto-optimal allocation, Which is an extension of the ones introduced by Ludger Rüschendorf (2006).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

6067-6070

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D., Coherent multiperiod risk adjusted values and Bellman's principle, Annals of Operations Research, Vol. 152 (2007) No. 1, pp.5-22, (2007).

DOI: 10.1007/s10479-006-0132-6

Google Scholar

[2] Burgert, C., Ruschendorf, L., consistent risk measures for portfolio vectors, Insurance: Mathematics and Economics, Vol. 38 (2006) No. 2, pp.289-297.

DOI: 10.1016/j.insmatheco.2005.08.008

Google Scholar

[3] Borch, Reciprocal reinsurance treaties, ASTIN Bull, Vol. 1(1960a), pp.170-191.

DOI: 10.1017/s0515036100009557

Google Scholar

[4] Borch. The safety loading of reinsurance premiums, Skand Aktuarietidsskr, Vol. 1 (1960b), pp.163-184.

Google Scholar

[5] Gerber, Pareto-optimal risk exchanges and related decision problems, ASTIN Bull, Vol. 10 (1978) No2, pp.25-33.

DOI: 10.1017/s0515036100006310

Google Scholar

[6] Deprez H.U. Gerbert, on convex principles of premium calculation, Insurance Mathematical Economic, Vol. 4(1985)No. 3, pp.179-189.

Google Scholar

[7] Burgert, C., Ruschendorf, L., consistent risk measures for portfolio vectors, Insurance: Mathematics and Economics, Vol. 38 (2006) No. 2, pp.289-297.

DOI: 10.1016/j.insmatheco.2005.08.008

Google Scholar

[8] Föllmer, H. and Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, Vol. 6(2002b), pp.429-447.

DOI: 10.1007/s007800200072

Google Scholar

[9] Merto, Optimum consumption and portfolio rules in a continuous time model,J. Econ. Theory, Vol. 3 (1971)No6, pp.373-413.

Google Scholar

[10] Ludger Rüschendorf, Mathematical Risk Analysis, Springer, (2013).

Google Scholar

[11] Chevallier H.H. Müller, Risk allocation in capital markets: portfolio insurance, tactical asset allocation and collar strategies, ASTIN Bull, Vol. 24(1994)No2, pp.5-18.

DOI: 10.2143/ast.24.1.2005077

Google Scholar

[12] Dana,M. Scarsini, Optimal risk sharing with backgroundrisk ,J. Econ. Theory, Vol. 133(2007)No4, pp.152-176.

Google Scholar

[13] Acciaio,G. Svindland, Optimal risk sharing with different reference probabilities, Insur. Math. Econ. Vol. 44(2009)No3, pp.426-433.

DOI: 10.1016/j.insmatheco.2008.12.002

Google Scholar

[14] Kulikov A.V., Multidimensional coherent and convex risk measures, Theory Probab. Appl, Vol. 52 (2008) No. 4, pp.614-635.

DOI: 10.1137/s0040585x97983262

Google Scholar

[15] Jouini,W. Schachermayer,N. Touzi, Optimal risk sharing for law invariance monetary utility functions, Math. Finance, Vol. 18(2008)No. 5, pp.269-292.

DOI: 10.1111/j.1467-9965.2007.00332.x

Google Scholar

[16] Rüschendorf, Risk measures for portfolio vectors and allocation of risk, in Risk Assessment. Decisions in Banking and Insurance, ed. by G. Bol, S.T. Rachev, R. Würth (Physica-Verlag, Heidelberg), (2010), pp.133-164.

DOI: 10.1007/978-3-7908-2050-8_7

Google Scholar